Liangliang Zhu, Lin Tang, Xiangrong Tian, Yayuan Bai, Lili Huang
{"title":"Two Polyketide Synthase Genes, <i>VpPKS10</i> and <i>VpPKS33</i>, Regulated by VpLaeA Are Essential to the Virulence of <i>Valsa pyri</i>.","authors":"Liangliang Zhu, Lin Tang, Xiangrong Tian, Yayuan Bai, Lili Huang","doi":"10.1094/PHYTO-12-23-0498-R","DOIUrl":null,"url":null,"abstract":"<p><p><i>Valsa pyri</i>, the causal agent of pear canker disease, typically induces cankers on the bark of infected trees and even leads to tree mortality. Secondary metabolites produced by pathogenic fungi play a crucial role in the pathogenic process. In this study, secondary metabolic regulator VpLaeA was identified in <i>V. pyri</i>. <i>VpLaeA</i> was found to strongly affect the pathogenicity, fruiting body formation, and toxicity of secondary metabolites of <i>V. pyri</i>. Additionally, <i>VpLaeA</i> was found to be required for the response of <i>V. pyri</i> to some abiotic stresses. Transcriptome data analysis revealed that many of differentially expressed genes were involved in the secondary metabolite biosynthesis. Among them, about one third of secondary metabolite biosynthesis core genes were regulated by <i>VpLaeA</i> at different periods. Seven differentially expressed secondary metabolite biosynthesis core genes (<i>VpPKS9</i>, <i>VpPKS10</i>, <i>VpPKS33</i>, <i>VpNRPS6</i>, <i>VpNRPS7</i>, <i>VpNRPS16</i>, and <i>VpNRPS17</i>) were selected for knockout. Two modular polyketide synthase genes (<i>VpPKS10</i> and <i>VpPKS33</i>) that were closely related to the virulence of <i>V. pyri</i> from the above seven genes were identified. Notably, <i>VpPKS10</i> and <i>VpPKS33</i> also affected the production of fruiting body of <i>V. pyri</i> but did not participate in the resistance of <i>V. pyri</i> to abiotic stresses. Overall, this study demonstrates the multifaceted biological functions of <i>VpLaeA</i> in <i>V. pyri</i> and identifies two toxicity-associated polyketide synthase genes in <i>Valsa</i> species fungi for the first time.</p>","PeriodicalId":20410,"journal":{"name":"Phytopathology","volume":" ","pages":"2071-2083"},"PeriodicalIF":2.6000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Phytopathology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1094/PHYTO-12-23-0498-R","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/9 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Valsa pyri, the causal agent of pear canker disease, typically induces cankers on the bark of infected trees and even leads to tree mortality. Secondary metabolites produced by pathogenic fungi play a crucial role in the pathogenic process. In this study, secondary metabolic regulator VpLaeA was identified in V. pyri. VpLaeA was found to strongly affect the pathogenicity, fruiting body formation, and toxicity of secondary metabolites of V. pyri. Additionally, VpLaeA was found to be required for the response of V. pyri to some abiotic stresses. Transcriptome data analysis revealed that many of differentially expressed genes were involved in the secondary metabolite biosynthesis. Among them, about one third of secondary metabolite biosynthesis core genes were regulated by VpLaeA at different periods. Seven differentially expressed secondary metabolite biosynthesis core genes (VpPKS9, VpPKS10, VpPKS33, VpNRPS6, VpNRPS7, VpNRPS16, and VpNRPS17) were selected for knockout. Two modular polyketide synthase genes (VpPKS10 and VpPKS33) that were closely related to the virulence of V. pyri from the above seven genes were identified. Notably, VpPKS10 and VpPKS33 also affected the production of fruiting body of V. pyri but did not participate in the resistance of V. pyri to abiotic stresses. Overall, this study demonstrates the multifaceted biological functions of VpLaeA in V. pyri and identifies two toxicity-associated polyketide synthase genes in Valsa species fungi for the first time.
期刊介绍:
Phytopathology publishes articles on fundamental research that advances understanding of the nature of plant diseases, the agents that cause them, their spread, the losses they cause, and measures that can be used to control them. Phytopathology considers manuscripts covering all aspects of plant diseases including bacteriology, host-parasite biochemistry and cell biology, biological control, disease control and pest management, description of new pathogen species description of new pathogen species, ecology and population biology, epidemiology, disease etiology, host genetics and resistance, mycology, nematology, plant stress and abiotic disorders, postharvest pathology and mycotoxins, and virology. Papers dealing mainly with taxonomy, such as descriptions of new plant pathogen taxa are acceptable if they include plant disease research results such as pathogenicity, host range, etc. Taxonomic papers that focus on classification, identification, and nomenclature below the subspecies level may also be submitted to Phytopathology.