A Framework for the Generation of Monitor and Plant Model From Event Logs Using Process Mining for Formal Verification of Event-Driven Systems

IF 5.2 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Open Journal of the Industrial Electronics Society Pub Date : 2024-06-05 DOI:10.1109/OJIES.2024.3406059
Midhun Xavier;Victor Dubinin;Sandeep Patil;Valeriy Vyatkin
{"title":"A Framework for the Generation of Monitor and Plant Model From Event Logs Using Process Mining for Formal Verification of Event-Driven Systems","authors":"Midhun Xavier;Victor Dubinin;Sandeep Patil;Valeriy Vyatkin","doi":"10.1109/OJIES.2024.3406059","DOIUrl":null,"url":null,"abstract":"This article proposes a method for the automatic generation of a plant model and monitoring using process mining algorithms based on recorded event logs. The behavioral traces of the system are captured by recording event logs during plant operation in either manual control mode or with an automatic controller. Process discovery algorithms are then applied to extract the logic of the process behavior properties from the recorded event logs. The result is represented as a Petri net, which is used to construct the state machine of the plant model and monitor and is in accordance with the IEC 61499 Standard. The monitor is implemented as a function block and can be deployed in real time to trigger an error signal whenever there is a deviation from the actual process scenario. The plant model and controller are connected in a closed loop and are used for the formal verification of the system with the help of the “fb2smv” converter and symbolic model checking tool NuSMV.","PeriodicalId":52675,"journal":{"name":"IEEE Open Journal of the Industrial Electronics Society","volume":"5 ","pages":"517-534"},"PeriodicalIF":5.2000,"publicationDate":"2024-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10550182","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of the Industrial Electronics Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10550182/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

This article proposes a method for the automatic generation of a plant model and monitoring using process mining algorithms based on recorded event logs. The behavioral traces of the system are captured by recording event logs during plant operation in either manual control mode or with an automatic controller. Process discovery algorithms are then applied to extract the logic of the process behavior properties from the recorded event logs. The result is represented as a Petri net, which is used to construct the state machine of the plant model and monitor and is in accordance with the IEC 61499 Standard. The monitor is implemented as a function block and can be deployed in real time to trigger an error signal whenever there is a deviation from the actual process scenario. The plant model and controller are connected in a closed loop and are used for the formal verification of the system with the help of the “fb2smv” converter and symbolic model checking tool NuSMV.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用流程挖掘从事件日志生成监控器和工厂模型的框架,用于事件驱动系统的形式化验证
本文提出了一种基于记录的事件日志,利用过程挖掘算法自动生成工厂模型并进行监控的方法。在手动控制模式或使用自动控制器的工厂运行过程中,通过记录事件日志来捕捉系统的行为轨迹。然后应用流程挖掘算法,从记录的事件日志中提取流程行为属性的逻辑。结果以 Petri 网的形式表示,用于构建工厂模型和监控器的状态机,并符合 IEC 61499 标准。监控器以功能模块的形式实现,可实时部署,一旦出现与实际过程场景的偏差,就会触发错误信号。工厂模型和控制器连接成一个闭环,并在 "fb2smv "转换器和符号模型检查工具 NuSMV 的帮助下用于系统的正式验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Open Journal of the Industrial Electronics Society
IEEE Open Journal of the Industrial Electronics Society ENGINEERING, ELECTRICAL & ELECTRONIC-
CiteScore
10.80
自引率
2.40%
发文量
33
审稿时长
12 weeks
期刊介绍: The IEEE Open Journal of the Industrial Electronics Society is dedicated to advancing information-intensive, knowledge-based automation, and digitalization, aiming to enhance various industrial and infrastructural ecosystems including energy, mobility, health, and home/building infrastructure. Encompassing a range of techniques leveraging data and information acquisition, analysis, manipulation, and distribution, the journal strives to achieve greater flexibility, efficiency, effectiveness, reliability, and security within digitalized and networked environments. Our scope provides a platform for discourse and dissemination of the latest developments in numerous research and innovation areas. These include electrical components and systems, smart grids, industrial cyber-physical systems, motion control, robotics and mechatronics, sensors and actuators, factory and building communication and automation, industrial digitalization, flexible and reconfigurable manufacturing, assistant systems, industrial applications of artificial intelligence and data science, as well as the implementation of machine learning, artificial neural networks, and fuzzy logic. Additionally, we explore human factors in digitalized and networked ecosystems. Join us in exploring and shaping the future of industrial electronics and digitalization.
期刊最新文献
Short-Term Control of Heat Pumps to Support Power Grid Operation Effects of Grid Voltage and Load Unbalances on the Efficiency of a Hybrid Distribution Transformer Enhanced PI Control Based SHC-PWM Strategy for Active Power Filters A Detailed Study on Algorithms for Predictive Maintenance in Smart Manufacturing: Chip Form Classification Using Edge Machine Learning Design and Evaluation of a Voice-Controlled Elevator System to Improve the Safety and Accessibility
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1