Silvia Giuntini, Juha Saari, Adriano Martinoli, Damiano G. Preatoni, Birgen Haest, Baptiste Schmid, Nadja Weisshaupt
{"title":"Quantifying nocturnal thrush migration using sensor data fusion between acoustics and vertical‐looking radar","authors":"Silvia Giuntini, Juha Saari, Adriano Martinoli, Damiano G. Preatoni, Birgen Haest, Baptiste Schmid, Nadja Weisshaupt","doi":"10.1002/rse2.397","DOIUrl":null,"url":null,"abstract":"Studying nocturnal bird migration is challenging because direct visual observations are difficult during darkness. Radar has been the means of choice to study nocturnal bird migration for several decades, but provides limited taxonomic information. Here, to ascertain the feasibility of enhancing the taxonomic resolution of radar data, we combined acoustic data with vertical‐looking radar measurements to quantify thrush (Family: Turdidae) migration. Acoustic recordings, collected in Helsinki between August and October of 2021–2022, were used to identify likely nights of high and low thrush migration. Then, we built a random forest classifier that used recorded radar signals from those nights to separate all migrating passerines across the autumn migration season into thrushes and non‐thrushes. The classifier had a high overall accuracy (≈0.82), with wingbeat frequency and bird size being key for separation. The overall estimated thrush autumn migration phenology was in line with known migratory patterns and strongly correlated (Pearson correlation coefficient ≈0.65) with the phenology of the acoustic data. These results confirm how the joint application of acoustic and vertical‐looking radar data can, under certain migratory conditions and locations, be used to quantify ‘family‐level’ bird migration.","PeriodicalId":21132,"journal":{"name":"Remote Sensing in Ecology and Conservation","volume":"23 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Remote Sensing in Ecology and Conservation","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1002/rse2.397","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Studying nocturnal bird migration is challenging because direct visual observations are difficult during darkness. Radar has been the means of choice to study nocturnal bird migration for several decades, but provides limited taxonomic information. Here, to ascertain the feasibility of enhancing the taxonomic resolution of radar data, we combined acoustic data with vertical‐looking radar measurements to quantify thrush (Family: Turdidae) migration. Acoustic recordings, collected in Helsinki between August and October of 2021–2022, were used to identify likely nights of high and low thrush migration. Then, we built a random forest classifier that used recorded radar signals from those nights to separate all migrating passerines across the autumn migration season into thrushes and non‐thrushes. The classifier had a high overall accuracy (≈0.82), with wingbeat frequency and bird size being key for separation. The overall estimated thrush autumn migration phenology was in line with known migratory patterns and strongly correlated (Pearson correlation coefficient ≈0.65) with the phenology of the acoustic data. These results confirm how the joint application of acoustic and vertical‐looking radar data can, under certain migratory conditions and locations, be used to quantify ‘family‐level’ bird migration.
期刊介绍:
emote Sensing in Ecology and Conservation provides a forum for rapid, peer-reviewed publication of novel, multidisciplinary research at the interface between remote sensing science and ecology and conservation. The journal prioritizes findings that advance the scientific basis of ecology and conservation, promoting the development of remote-sensing based methods relevant to the management of land use and biological systems at all levels, from populations and species to ecosystems and biomes. The journal defines remote sensing in its broadest sense, including data acquisition by hand-held and fixed ground-based sensors, such as camera traps and acoustic recorders, and sensors on airplanes and satellites. The intended journal’s audience includes ecologists, conservation scientists, policy makers, managers of terrestrial and aquatic systems, remote sensing scientists, and students.
Remote Sensing in Ecology and Conservation is a fully open access journal from Wiley and the Zoological Society of London. Remote sensing has enormous potential as to provide information on the state of, and pressures on, biological diversity and ecosystem services, at multiple spatial and temporal scales. This new publication provides a forum for multidisciplinary research in remote sensing science, ecological research and conservation science.