A feedback loop driven by H3K9 lactylation and HDAC2 in endothelial cells regulates VEGF-induced angiogenesis

IF 10.1 1区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Genome Biology Pub Date : 2024-06-25 DOI:10.1186/s13059-024-03308-5
Wei Fan, Shuhao Zeng, Xiaotang Wang, Guoqing Wang, Dan Liao, Ruonan Li, Siyuan He, Wanqian Li, Jiaxing Huang, Xingran Li, Jiangyi Liu, Na Li, Shengping Hou
{"title":"A feedback loop driven by H3K9 lactylation and HDAC2 in endothelial cells regulates VEGF-induced angiogenesis","authors":"Wei Fan, Shuhao Zeng, Xiaotang Wang, Guoqing Wang, Dan Liao, Ruonan Li, Siyuan He, Wanqian Li, Jiaxing Huang, Xingran Li, Jiangyi Liu, Na Li, Shengping Hou","doi":"10.1186/s13059-024-03308-5","DOIUrl":null,"url":null,"abstract":"Vascular endothelial growth factor (VEGF) is one of the most powerful proangiogenic factors and plays an important role in multiple diseases. Increased glycolytic rates and lactate accumulation are associated with pathological angiogenesis. Here, we show that a feedback loop between H3K9 lactylation (H3K9la) and histone deacetylase 2 (HDAC2) in endothelial cells drives VEGF-induced angiogenesis. We find that the H3K9la levels are upregulated in endothelial cells in response to VEGF stimulation. Pharmacological inhibition of glycolysis decreases H3K9 lactylation and attenuates neovascularization. CUT& Tag analysis reveals that H3K9la is enriched at the promoters of a set of angiogenic genes and promotes their transcription. Interestingly, we find that hyperlactylation of H3K9 inhibits expression of the lactylation eraser HDAC2, whereas overexpression of HDAC2 decreases H3K9 lactylation and suppresses angiogenesis. Collectively, our study illustrates that H3K9la is important for VEGF-induced angiogenesis, and interruption of the H3K9la/HDAC2 feedback loop may represent a novel therapeutic method for treating pathological neovascularization.","PeriodicalId":12611,"journal":{"name":"Genome Biology","volume":null,"pages":null},"PeriodicalIF":10.1000,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genome Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13059-024-03308-5","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Vascular endothelial growth factor (VEGF) is one of the most powerful proangiogenic factors and plays an important role in multiple diseases. Increased glycolytic rates and lactate accumulation are associated with pathological angiogenesis. Here, we show that a feedback loop between H3K9 lactylation (H3K9la) and histone deacetylase 2 (HDAC2) in endothelial cells drives VEGF-induced angiogenesis. We find that the H3K9la levels are upregulated in endothelial cells in response to VEGF stimulation. Pharmacological inhibition of glycolysis decreases H3K9 lactylation and attenuates neovascularization. CUT& Tag analysis reveals that H3K9la is enriched at the promoters of a set of angiogenic genes and promotes their transcription. Interestingly, we find that hyperlactylation of H3K9 inhibits expression of the lactylation eraser HDAC2, whereas overexpression of HDAC2 decreases H3K9 lactylation and suppresses angiogenesis. Collectively, our study illustrates that H3K9la is important for VEGF-induced angiogenesis, and interruption of the H3K9la/HDAC2 feedback loop may represent a novel therapeutic method for treating pathological neovascularization.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
内皮细胞中由 H3K9 乳化和 HDAC2 驱动的反馈回路调节血管内皮生长因子诱导的血管生成
血管内皮生长因子(VEGF)是最强大的促血管生成因子之一,在多种疾病中发挥着重要作用。糖酵解率和乳酸积累的增加与病理性血管生成有关。在这里,我们发现内皮细胞中的 H3K9 乳酰化(H3K9la)和组蛋白去乙酰化酶 2(HDAC2)之间的反馈回路推动了 VEGF 诱导的血管生成。我们发现,血管内皮细胞中的 H3K9la 水平在血管内皮生长因子的刺激下上调。药物抑制糖酵解会降低 H3K9 乳酰化并减弱血管新生。CUT& Tag 分析显示,H3K9la 在一组血管生成基因的启动子中富集,并促进其转录。有趣的是,我们发现 H3K9 的过度乳化会抑制乳化清除剂 HDAC2 的表达,而 HDAC2 的过度表达会降低 H3K9 的乳化并抑制血管生成。总之,我们的研究表明,H3K9la 对血管内皮生长因子诱导的血管生成很重要,而阻断 H3K9la/HDAC2 反馈环可能是治疗病理性新生血管的一种新的治疗方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Genome Biology
Genome Biology Biochemistry, Genetics and Molecular Biology-Genetics
CiteScore
21.00
自引率
3.30%
发文量
241
审稿时长
2 months
期刊介绍: Genome Biology stands as a premier platform for exceptional research across all domains of biology and biomedicine, explored through a genomic and post-genomic lens. With an impressive impact factor of 12.3 (2022),* the journal secures its position as the 3rd-ranked research journal in the Genetics and Heredity category and the 2nd-ranked research journal in the Biotechnology and Applied Microbiology category by Thomson Reuters. Notably, Genome Biology holds the distinction of being the highest-ranked open-access journal in this category. Our dedicated team of highly trained in-house Editors collaborates closely with our esteemed Editorial Board of international experts, ensuring the journal remains on the forefront of scientific advances and community standards. Regular engagement with researchers at conferences and institute visits underscores our commitment to staying abreast of the latest developments in the field.
期刊最新文献
Atlas of telomeric repeat diversity in Arabidopsis thaliana ESCHR: a hyperparameter-randomized ensemble approach for robust clustering across diverse datasets Splam: a deep-learning-based splice site predictor that improves spliced alignments Dimension reduction, cell clustering, and cell–cell communication inference for single-cell transcriptomics with DcjComm A comprehensive map of the aging blood methylome in humans
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1