首页 > 最新文献

Genome Biology最新文献

英文 中文
ESCHR: a hyperparameter-randomized ensemble approach for robust clustering across diverse datasets ESCHR:在不同数据集上进行稳健聚类的超参数随机集合方法
IF 12.3 1区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-09-16 DOI: 10.1186/s13059-024-03386-5
Sarah M. Goggin, Eli R. Zunder
Clustering is widely used for single-cell analysis, but current methods are limited in accuracy, robustness, ease of use, and interpretability. To address these limitations, we developed an ensemble clustering method that outperforms other methods at hard clustering without the need for hyperparameter tuning. It also performs soft clustering to characterize continuum-like regions and quantify clustering uncertainty, demonstrated here by mapping the connectivity and intermediate transitions between MNIST handwritten digits and between hypothalamic tanycyte subpopulations. This hyperparameter-randomized ensemble approach improves the accuracy, robustness, ease of use, and interpretability of single-cell clustering, and may prove useful in other fields as well.
聚类被广泛用于单细胞分析,但目前的方法在准确性、稳健性、易用性和可解释性方面都有局限。为了解决这些局限性,我们开发了一种集合聚类方法,该方法在硬聚类方面优于其他方法,且无需调整超参数。它还能进行软聚类,以描述类似连续体的区域并量化聚类的不确定性,在此通过绘制 MNIST 手写数字之间和下丘脑澹细胞亚群之间的连接性和中间转换图加以证明。这种超参数随机集合方法提高了单细胞聚类的准确性、鲁棒性、易用性和可解释性,可能在其他领域也很有用。
{"title":"ESCHR: a hyperparameter-randomized ensemble approach for robust clustering across diverse datasets","authors":"Sarah M. Goggin, Eli R. Zunder","doi":"10.1186/s13059-024-03386-5","DOIUrl":"https://doi.org/10.1186/s13059-024-03386-5","url":null,"abstract":"Clustering is widely used for single-cell analysis, but current methods are limited in accuracy, robustness, ease of use, and interpretability. To address these limitations, we developed an ensemble clustering method that outperforms other methods at hard clustering without the need for hyperparameter tuning. It also performs soft clustering to characterize continuum-like regions and quantify clustering uncertainty, demonstrated here by mapping the connectivity and intermediate transitions between MNIST handwritten digits and between hypothalamic tanycyte subpopulations. This hyperparameter-randomized ensemble approach improves the accuracy, robustness, ease of use, and interpretability of single-cell clustering, and may prove useful in other fields as well.","PeriodicalId":12611,"journal":{"name":"Genome Biology","volume":null,"pages":null},"PeriodicalIF":12.3,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142234448","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Splam: a deep-learning-based splice site predictor that improves spliced alignments Splam:基于深度学习的剪接位点预测器,可改进剪接排列
IF 12.3 1区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-09-16 DOI: 10.1186/s13059-024-03379-4
Kuan-Hao Chao, Alan Mao, Steven L. Salzberg, Mihaela Pertea
The process of splicing messenger RNA to remove introns plays a central role in creating genes and gene variants. We describe Splam, a novel method for predicting splice junctions in DNA using deep residual convolutional neural networks. Unlike previous models, Splam looks at a 400-base-pair window flanking each splice site, reflecting the biological splicing process that relies primarily on signals within this window. Splam also trains on donor and acceptor pairs together, mirroring how the splicing machinery recognizes both ends of each intron. Compared to SpliceAI, Splam is consistently more accurate, achieving 96% accuracy in predicting human splice junctions.
剪接信使 RNA 以去除内含子的过程在创建基因和基因变体中起着核心作用。我们介绍的 Splam 是一种利用深度残差卷积神经网络预测 DNA 中剪接接头的新方法。与之前的模型不同,Splam 观察的是每个剪接位点侧翼的 400 碱基对窗口,反映了主要依赖该窗口内信号的生物剪接过程。Splam 还同时对供体和受体对进行训练,以反映剪接机器如何识别每个内含子的两端。与 SpliceAI 相比,Splam 的准确率一直较高,预测人类剪接接头的准确率达到 96%。
{"title":"Splam: a deep-learning-based splice site predictor that improves spliced alignments","authors":"Kuan-Hao Chao, Alan Mao, Steven L. Salzberg, Mihaela Pertea","doi":"10.1186/s13059-024-03379-4","DOIUrl":"https://doi.org/10.1186/s13059-024-03379-4","url":null,"abstract":"The process of splicing messenger RNA to remove introns plays a central role in creating genes and gene variants. We describe Splam, a novel method for predicting splice junctions in DNA using deep residual convolutional neural networks. Unlike previous models, Splam looks at a 400-base-pair window flanking each splice site, reflecting the biological splicing process that relies primarily on signals within this window. Splam also trains on donor and acceptor pairs together, mirroring how the splicing machinery recognizes both ends of each intron. Compared to SpliceAI, Splam is consistently more accurate, achieving 96% accuracy in predicting human splice junctions.","PeriodicalId":12611,"journal":{"name":"Genome Biology","volume":null,"pages":null},"PeriodicalIF":12.3,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142234461","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Atlas of telomeric repeat diversity in Arabidopsis thaliana 拟南芥端粒重复多样性图谱
IF 12.3 1区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-09-16 DOI: 10.1186/s13059-024-03388-3
Yueqi Tao, Wenfei Xian, Zhigui Bao, Fernando A. Rabanal, Andrea Movilli, Christa Lanz, Gautam Shirsekar, Detlef Weigel
Telomeric repeat arrays at the ends of chromosomes are highly dynamic in composition, but their repetitive nature and technological limitations have made it difficult to assess their true variation in genome diversity surveys. We have comprehensively characterized the sequence variation immediately adjacent to the canonical telomeric repeat arrays at the very ends of chromosomes in 74 genetically diverse Arabidopsis thaliana accessions. We first describe several types of distinct telomeric repeat units and then identify evolutionary processes such as local homogenization and higher-order repeat formation that shape diversity of chromosome ends. By comparing largely isogenic samples, we also determine repeat number variation of the degenerate and variant telomeric repeat array at both the germline and somatic levels. Finally, our analysis of haplotype structure uncovers chromosome end-specific patterns in the distribution of variant telomeric repeats, and their linkage to the more proximal non-coding region. Our findings illustrate the spectrum of telomeric repeat variation at multiple levels in A. thaliana—in germline and soma, across all chromosome ends, and across genetic groups—thereby expanding our knowledge of the evolution of chromosome ends.
染色体末端的端粒重复阵列在组成上具有高度动态性,但由于其重复性和技术限制,很难在基因组多样性调查中评估其真实变异。我们全面描述了 74 个遗传多样性拟南芥品种中紧邻染色体末端典型端粒重复阵列的序列变异。我们首先描述了几种不同类型的端粒重复单元,然后确定了形成染色体末端多样性的进化过程,如局部同质化和高阶重复的形成。通过比较基本同源的样本,我们还确定了退化和变异端粒重复序列在种系和体细胞水平上的重复数变异。最后,我们对单体型结构的分析揭示了变异端粒重复序列分布的染色体末端特异性模式,以及它们与更近端非编码区的联系。我们的研究结果表明了端粒重复变异在泰利亚蛙种系和体细胞、所有染色体末端以及不同基因组中的多层次分布,从而扩展了我们对染色体末端进化的认识。
{"title":"Atlas of telomeric repeat diversity in Arabidopsis thaliana","authors":"Yueqi Tao, Wenfei Xian, Zhigui Bao, Fernando A. Rabanal, Andrea Movilli, Christa Lanz, Gautam Shirsekar, Detlef Weigel","doi":"10.1186/s13059-024-03388-3","DOIUrl":"https://doi.org/10.1186/s13059-024-03388-3","url":null,"abstract":"Telomeric repeat arrays at the ends of chromosomes are highly dynamic in composition, but their repetitive nature and technological limitations have made it difficult to assess their true variation in genome diversity surveys. We have comprehensively characterized the sequence variation immediately adjacent to the canonical telomeric repeat arrays at the very ends of chromosomes in 74 genetically diverse Arabidopsis thaliana accessions. We first describe several types of distinct telomeric repeat units and then identify evolutionary processes such as local homogenization and higher-order repeat formation that shape diversity of chromosome ends. By comparing largely isogenic samples, we also determine repeat number variation of the degenerate and variant telomeric repeat array at both the germline and somatic levels. Finally, our analysis of haplotype structure uncovers chromosome end-specific patterns in the distribution of variant telomeric repeats, and their linkage to the more proximal non-coding region. Our findings illustrate the spectrum of telomeric repeat variation at multiple levels in A. thaliana—in germline and soma, across all chromosome ends, and across genetic groups—thereby expanding our knowledge of the evolution of chromosome ends.","PeriodicalId":12611,"journal":{"name":"Genome Biology","volume":null,"pages":null},"PeriodicalIF":12.3,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142234447","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dimension reduction, cell clustering, and cell–cell communication inference for single-cell transcriptomics with DcjComm 利用 DcjComm 对单细胞转录组学进行降维、细胞聚类和细胞间通讯推断
IF 12.3 1区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-09-09 DOI: 10.1186/s13059-024-03385-6
Qian Ding, Wenyi Yang, Guangfu Xue, Hongxin Liu, Yideng Cai, Jinhao Que, Xiyun Jin, Meng Luo, Fenglan Pang, Yuexin Yang, Yi Lin, Yusong Liu, Haoxiu Sun, Renjie Tan, Pingping Wang, Zhaochun Xu, Qinghua Jiang
Advances in single-cell transcriptomics provide an unprecedented opportunity to explore complex biological processes. However, computational methods for analyzing single-cell transcriptomics still have room for improvement especially in dimension reduction, cell clustering, and cell–cell communication inference. Herein, we propose a versatile method, named DcjComm, for comprehensive analysis of single-cell transcriptomics. DcjComm detects functional modules to explore expression patterns and performs dimension reduction and clustering to discover cellular identities by the non-negative matrix factorization-based joint learning model. DcjComm then infers cell–cell communication by integrating ligand-receptor pairs, transcription factors, and target genes. DcjComm demonstrates superior performance compared to state-of-the-art methods.
单细胞转录组学的进步为探索复杂的生物过程提供了前所未有的机会。然而,用于分析单细胞转录组学的计算方法仍有改进的余地,尤其是在降维、细胞聚类和细胞间通讯推断方面。在此,我们提出了一种名为 DcjComm 的多功能方法,用于单细胞转录组学的综合分析。DcjComm 检测功能模块以探索表达模式,并通过基于非负矩阵因式分解的联合学习模型进行降维和聚类以发现细胞特征。然后,DcjComm 通过整合配体-受体对、转录因子和靶基因来推断细胞间的通讯。与最先进的方法相比,DcjComm 表现出了卓越的性能。
{"title":"Dimension reduction, cell clustering, and cell–cell communication inference for single-cell transcriptomics with DcjComm","authors":"Qian Ding, Wenyi Yang, Guangfu Xue, Hongxin Liu, Yideng Cai, Jinhao Que, Xiyun Jin, Meng Luo, Fenglan Pang, Yuexin Yang, Yi Lin, Yusong Liu, Haoxiu Sun, Renjie Tan, Pingping Wang, Zhaochun Xu, Qinghua Jiang","doi":"10.1186/s13059-024-03385-6","DOIUrl":"https://doi.org/10.1186/s13059-024-03385-6","url":null,"abstract":"Advances in single-cell transcriptomics provide an unprecedented opportunity to explore complex biological processes. However, computational methods for analyzing single-cell transcriptomics still have room for improvement especially in dimension reduction, cell clustering, and cell–cell communication inference. Herein, we propose a versatile method, named DcjComm, for comprehensive analysis of single-cell transcriptomics. DcjComm detects functional modules to explore expression patterns and performs dimension reduction and clustering to discover cellular identities by the non-negative matrix factorization-based joint learning model. DcjComm then infers cell–cell communication by integrating ligand-receptor pairs, transcription factors, and target genes. DcjComm demonstrates superior performance compared to state-of-the-art methods.","PeriodicalId":12611,"journal":{"name":"Genome Biology","volume":null,"pages":null},"PeriodicalIF":12.3,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142158747","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A comprehensive map of the aging blood methylome in humans 人类老化血液甲基组综合图谱
IF 12.3 1区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-09-06 DOI: 10.1186/s13059-024-03381-w
Kirsten Seale, Andrew Teschendorff, Alexander P. Reiner, Sarah Voisin, Nir Eynon
During aging, the human methylome undergoes both differential and variable shifts, accompanied by increased entropy. The distinction between variably methylated positions (VMPs) and differentially methylated positions (DMPs), their contribution to epigenetic age, and the role of cell type heterogeneity remain unclear. We conduct a comprehensive analysis of > 32,000 human blood methylomes from 56 datasets (age range = 6–101 years). We find a significant proportion of the blood methylome that is differentially methylated with age (48% DMPs; FDR < 0.005) and variably methylated with age (37% VMPs; FDR < 0.005), with considerable overlap between the two groups (59% of DMPs are VMPs). Bivalent and Polycomb regions become increasingly methylated and divergent between individuals, while quiescent regions lose methylation more uniformly. Both chronological and biological clocks, but not pace-of-aging clocks, show a strong enrichment for CpGs undergoing both mean and variance changes during aging. The accumulation of DMPs shifting towards a methylation fraction of 50% drives the increase in entropy, smoothening the epigenetic landscape. However, approximately a quarter of DMPs exhibit anti-entropic effects, opposing this direction of change. While changes in cell type composition minimally affect DMPs, VMPs and entropy measurements are moderately sensitive to such alterations. This study represents the largest investigation to date of genome-wide DNA methylation changes and aging in a single tissue, providing valuable insights into primary molecular changes relevant to chronological and biological aging.
在衰老过程中,人类甲基组会发生不同和可变的变化,同时伴随着熵的增加。可变甲基化位置(VMPs)和差异甲基化位置(DMPs)之间的区别、它们对表观遗传年龄的贡献以及细胞类型异质性的作用仍不清楚。我们对来自 56 个数据集(年龄范围 = 6-101 岁)的 > 32,000 个人类血液甲基组进行了全面分析。我们发现血液甲基组中有很大一部分随年龄发生差异甲基化(48% DMPs;FDR < 0.005)和随年龄发生变异甲基化(37% VMPs;FDR < 0.005),两组之间有相当大的重叠(59% 的 DMPs 是 VMPs)。二价区和多聚核糖区的甲基化程度越来越高,个体间的差异也越来越大,而静止区的甲基化损失则更为均匀。在衰老过程中,计时时钟和生物钟(而非衰老时钟)都显示出平均值和方差变化的 CpGs 有很强的富集性。DMPs 的积累趋向于甲基化比例达到 50%,从而推动了熵的增加,使表观遗传景观更加平滑。然而,大约四分之一的 DMPs 表现出反熵效应,与这一变化方向相反。细胞类型组成的变化对 DMPs 的影响很小,而 VMPs 和熵的测量对这种变化的敏感度则适中。这项研究是迄今为止对单一组织中全基因组 DNA 甲基化变化和衰老的最大规模调查,为了解与时间和生物衰老相关的主要分子变化提供了宝贵的信息。
{"title":"A comprehensive map of the aging blood methylome in humans","authors":"Kirsten Seale, Andrew Teschendorff, Alexander P. Reiner, Sarah Voisin, Nir Eynon","doi":"10.1186/s13059-024-03381-w","DOIUrl":"https://doi.org/10.1186/s13059-024-03381-w","url":null,"abstract":"During aging, the human methylome undergoes both differential and variable shifts, accompanied by increased entropy. The distinction between variably methylated positions (VMPs) and differentially methylated positions (DMPs), their contribution to epigenetic age, and the role of cell type heterogeneity remain unclear. We conduct a comprehensive analysis of > 32,000 human blood methylomes from 56 datasets (age range = 6–101 years). We find a significant proportion of the blood methylome that is differentially methylated with age (48% DMPs; FDR < 0.005) and variably methylated with age (37% VMPs; FDR < 0.005), with considerable overlap between the two groups (59% of DMPs are VMPs). Bivalent and Polycomb regions become increasingly methylated and divergent between individuals, while quiescent regions lose methylation more uniformly. Both chronological and biological clocks, but not pace-of-aging clocks, show a strong enrichment for CpGs undergoing both mean and variance changes during aging. The accumulation of DMPs shifting towards a methylation fraction of 50% drives the increase in entropy, smoothening the epigenetic landscape. However, approximately a quarter of DMPs exhibit anti-entropic effects, opposing this direction of change. While changes in cell type composition minimally affect DMPs, VMPs and entropy measurements are moderately sensitive to such alterations. This study represents the largest investigation to date of genome-wide DNA methylation changes and aging in a single tissue, providing valuable insights into primary molecular changes relevant to chronological and biological aging.\u0000","PeriodicalId":12611,"journal":{"name":"Genome Biology","volume":null,"pages":null},"PeriodicalIF":12.3,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142142592","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Publisher Correction: scParser: sparse representation learning for scalable single-cell RNA sequencing data analysis 出版商更正:scParser:用于可扩展单细胞 RNA 测序数据分析的稀疏表示学习
IF 12.3 1区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-09-04 DOI: 10.1186/s13059-024-03378-5
Kai Zhao, Hon-Cheong So, Zhixiang Lin
<p><b>Publisher Correction: Genome Biol 25, 223 (2024)</b></p><p><b>https://doi.org/10.1186/s13059-024-03345-0</b></p><br/><p>Following publication of the original article [1], the authors identified a typesetting error in Eq. 3, 4 and 10, as well as in Algorithm 1 equation. An erroneous “<i>ll</i>” was typeset at the start of the equations.</p><p>The incorrect and corrected versions are published in this correction article.</p><p>Incorrect equation (3)</p><span>$$left{ begin{array}{ll} llmathcal{L}(d, p, v, s, g) = & frac{1}{2} sumnolimits_{i,m} left( z_{i,m} - d_{j}^{mathsf{T}} v_{m} - p_{t}^{mathsf{T}} v_{m} - s_{i}^{mathsf{T}} g_{m} right)^{2} + & frac{1}{2} lambda_{1} left( sumnolimits_{j} | d_{j} |^{2}_{2} + sumnolimits_{t} | d_{t} |^{2}_{2} + sumnolimits_{m} | v_{m} |^{2}_{2}right) + & lambda_{2} left( frac{1}{2} (1-alpha) sumnolimits_{i} |s_{i}|_{2}^{2} + alpha sumnolimits_{i}|s_{i}|_{1} right), text{subject to} & sumnolimits_{m} g_{mk}^{2} leq c, forall k = 1, ldots, K_{2}. end{array}right.$$</span>(3)<p>Correct equation (3)</p><span>$$left{ begin{array}{ll}mathcal{L}(d, p, v, s, g) = & frac{1}{2} sumnolimits_{i,m} left( z_{i,m} - d_{j}^{mathsf{T}} v_{m} - p_{t}^{mathsf{T}} v_{m} - s_{i}^{mathsf{T}} g_{m} right)^{2} + & frac{1}{2} lambda_{1} left( sumnolimits_{j} | d_{j} |^{2}_{2} + sumnolimits_{t} | d_{t} |^{2}_{2} + sumnolimits_{m} | v_{m} |^{2}_{2}right) + & lambda_{2} left( frac{1}{2} (1-alpha) sumnolimits_{i} |s_{i}|_{2}^{2} + alpha sumnolimits_{i}|s_{i}|_{1} right), text{subject to} & sumnolimits_{m} g_{mk}^{2} leq c, forall k = 1, ldots, K_{2}. end{array}right.$$</span>(3)<p>Incorrect equation (4)</p><span>$$left{ begin{array}{ll} ll mathcal{L}(D, P, V, S, G) = & frac{1}{2} left| Z - left(X^{D} D + X^{P}Pright) V - SGright|_{text{F}}^{2}+ & frac{1}{2} lambda_{1} left( |D|^{2}_{text{F}} + |P|^{2}_{text{F}} + |V|^{2}_{text{F}}right) + & lambda_{2} left[ frac{1}{2} (1 - alpha) | S |^{2}_{text{F}} + alpha|S|_{1}right] text{subject to} & left| G_{2} right|_{2}^{2} leq c, forall k = 1, ldots, K_{2}, end{array}right.$$</span>(4)<p>Correct equation (4)</p><span>$$left{ begin{array}{ll}mathcal{L}(D, P, V, S, G) = & frac{1}{2} left| Z - left(X^{D} D + X^{P}Pright) V - SGright|_{text{F}}^{2}+ & frac{1}{2} lambda_{1} left( |D|^{2}_{text{F}} + |P|^{2}_{text{F}} + |V|^{2}_{text{F}}right) + & lambda_{2} left[ frac{1}{2} (1 - alpha) | S |^{2}_{text{F}} + alpha|S|_{1}right] text{subject to} & left| G_{2} right|_{2}^{2} leq c, forall k = 1, ldots, K_{2}, end{array}right.$$</span>(4)<p>Incorrect equation (10)</p><span>$$left{ begin{array}{ll} llmathcal{L}(V, G) = & frac{1}{2k} sumnolimits_{j=1}^{k} left| Z_{I_{j}} - left( X_{I_{j}}^{D} D_{I_{j}} + X_{I_{j}}^{P} P_{I_{j}} right) V - S_{I_{j}} Gright|^{2}_{F} + & frac{1}{2} lambda_{1} left[ frac{1}{k} sumnolimits_{j=1}^{k} left(left| D_{I_{j}} right|^{2}_{text{F}} + left| P_{I_{j}} right|^{2}_{F}right) + |V|^{2}_{F}right] + &
出版者更正:Genome Biol 25, 223 (2024)https://doi.org/10.1186/s13059-024-03345-0Following 原文[1]发表后,作者发现公式 3、4 和 10 以及算法 1 公式中有一处排版错误。错误的方程 (3)$$left{ begin{array}{ll} llmathcal{L}(d, p, v, s, g) = &amp; frac{1}{2}sumnolimits_{i,m}left( z_{i,m} - d_{j}^{mathsf{T}} v_{m} - p_{t}^{mathsf{T}} v_{m} - s_{i}^{mathsf{T}} g_{m}right)^{2}+ &amp; (frac{1}{2}lambda_{1}left( sumnolimits_{j}| d_{j}|^{2}_{2}+ sumnolimits_{t}| d_{t}|^{2}_{2}+ sumnolimits_{m}| v_{m}|^{2}_{2}right) + &amp; lambda_{2}left( frac{1}{2} (1-alpha) sumnolimits_{i}|s_{i}|_{2}^{2}+ α sumnolimits_{i}|s_{i}|_{1}right),(text{subject to} &amp; (sum/nolimits_{m} g_{mk}^{2}leq c, forall k = 1, ldots, K_{2}.end{array}right.$$(3)Correct equation (3)$$left{ begin{array}{ll}mathcal{L}(d, p, v, s, g) = &amp; frac{1}{2}sumnolimits_{i,m}left( z_{i,m} - d_{j}^{mathsf{T}} v_{m} - p_{t}^{mathsf{T}} v_{m} - s_{i}^{mathsf{T}} g_{m}right)^{2}+ &amp; (frac{1}{2}lambda_{1}left( sumnolimits_{j}| d_{j}|^{2}_{2}+ sumnolimits_{t}| d_{t}|^{2}_{2}+ sumnolimits_{m}| v_{m}|^{2}_{2}right) + &amp; lambda_{2}left( frac{1}{2} (1-alpha) sumnolimits_{i}|s_{i}|_{2}^{2}+ α sumnolimits_{i}|s_{i}|_{1}right),(text{subject to} &amp; (sum/nolimits_{m} g_{mk}^{2}leq c, forall k = 1, ldots, K_{2}.end{array}right.$$(3)Incorrect equation (4)$$left{ begin{array}{ll} ll mathcal{L}(D, P, V, S, G) = &amp; frac{1}{2}left| Z - left(X^{D} D + X^{P}Pright) V - SGright|_text{F}}^{2}+ &amp; frac{1}{2}lambda_{1}left( |D|^{2}_{text{F}} + |P|^{2}_{text{F}} + |V|^{2}_{text{F}}right) + &amp;lambda_{2}left[ frac{1}{2} (1 - alpha) | S |^{2}_{text{F}} + alpha|S|_{1}right] text{subject to} &amp; left| G_{2}|_{2}^{2}$$(4)Correct equation (4)$$left{ begin{array}{ll}mathcal{L}(D, P, V, S, G) = &amp; frac{1}{2}Z -left(X^{D} D + X^{P}Pright) V - SGright|_text{F}}^{2}+ &amp;frac{1}{2}lambda_{1}left( |D|^{2}_{text{F}} + |P|^{2}_{text{F}} + |V|^{2}_{text{F}}right) + &amp;lambda_{2}left[ frac{1}{2} (1 - alpha) | S |^{2}_{text{F}} + alpha|S|_{1}right] text{subject to} &amp; left| G_{2}|_{2}^{2}$$(4)Incorrect equation (10)$$left{ begin{array}{ll} llmathcal{L}(V, G) = &amp; frac{1}{2k} &amp; sumnolim} (V, G) = &amp; frac{1}{2k} &amp; frac{1}{2k} &amp; frac{1}{2k} &amp; frac{1}{2k} &amp; frac{1}{2k}.sumnolimits_{j=1}^{k}left| Z_{I_{j}}- left( X_{I_{j}}^{D} D_{I_{j}} + X_{I_{j}}^{P} P_{I_{j}} right) V - S_{I_{j}}Gright|^{2}_{F}+ &amp; frac{1}{2}lambda_{1}left[ frac{1}{k}sumnolimits_{j=1}^{k}left(left| D_{I_{j}}right|^{2}_{text{F}}+ P_{I_{j}}right|^{2}_{F}right) + |V|^{2}_{F}right].+ &amp; frac{1}{k}sumnolimits_{j=1}^{k}lambda_{2}left[ frac{1}{2} (1 - alpha) left| S_{I_{j}}right|^{2}_{F}+ alpha left| S_{I_{j}}|{2}right] , text{subject to} &amp; |G_{k}|^{2}_{2}$$(10)Correct equation (10)$$left{ begin{array}{ll}.mathcal{L}(V, G) = &amp; frac{1}{2k}sumnolimits_{j=1}^{k}left| Z_{I_{j}}- left( X_{I_{j}}^{D} D_{I_{j}} + X_{I_{j}}^{P} P_{I_{j}} right) V - S_{I_{j}}Gright|
{"title":"Publisher Correction: scParser: sparse representation learning for scalable single-cell RNA sequencing data analysis","authors":"Kai Zhao, Hon-Cheong So, Zhixiang Lin","doi":"10.1186/s13059-024-03378-5","DOIUrl":"https://doi.org/10.1186/s13059-024-03378-5","url":null,"abstract":"&lt;p&gt;&lt;b&gt;Publisher Correction: Genome Biol 25, 223 (2024)&lt;/b&gt;&lt;/p&gt;&lt;p&gt;&lt;b&gt;https://doi.org/10.1186/s13059-024-03345-0&lt;/b&gt;&lt;/p&gt;&lt;br/&gt;&lt;p&gt;Following publication of the original article [1], the authors identified a typesetting error in Eq. 3, 4 and 10, as well as in Algorithm 1 equation. An erroneous “&lt;i&gt;ll&lt;/i&gt;” was typeset at the start of the equations.&lt;/p&gt;&lt;p&gt;The incorrect and corrected versions are published in this correction article.&lt;/p&gt;&lt;p&gt;Incorrect equation (3)&lt;/p&gt;&lt;span&gt;$$left{ begin{array}{ll} llmathcal{L}(d, p, v, s, g) = &amp; frac{1}{2} sumnolimits_{i,m} left( z_{i,m} - d_{j}^{mathsf{T}} v_{m} - p_{t}^{mathsf{T}} v_{m} - s_{i}^{mathsf{T}} g_{m} right)^{2} + &amp; frac{1}{2} lambda_{1} left( sumnolimits_{j} | d_{j} |^{2}_{2} + sumnolimits_{t} | d_{t} |^{2}_{2} + sumnolimits_{m} | v_{m} |^{2}_{2}right) + &amp; lambda_{2} left( frac{1}{2} (1-alpha) sumnolimits_{i} |s_{i}|_{2}^{2} + alpha sumnolimits_{i}|s_{i}|_{1} right), text{subject to} &amp; sumnolimits_{m} g_{mk}^{2} leq c, forall k = 1, ldots, K_{2}. end{array}right.$$&lt;/span&gt;(3)&lt;p&gt;Correct equation (3)&lt;/p&gt;&lt;span&gt;$$left{ begin{array}{ll}mathcal{L}(d, p, v, s, g) = &amp; frac{1}{2} sumnolimits_{i,m} left( z_{i,m} - d_{j}^{mathsf{T}} v_{m} - p_{t}^{mathsf{T}} v_{m} - s_{i}^{mathsf{T}} g_{m} right)^{2} + &amp; frac{1}{2} lambda_{1} left( sumnolimits_{j} | d_{j} |^{2}_{2} + sumnolimits_{t} | d_{t} |^{2}_{2} + sumnolimits_{m} | v_{m} |^{2}_{2}right) + &amp; lambda_{2} left( frac{1}{2} (1-alpha) sumnolimits_{i} |s_{i}|_{2}^{2} + alpha sumnolimits_{i}|s_{i}|_{1} right), text{subject to} &amp; sumnolimits_{m} g_{mk}^{2} leq c, forall k = 1, ldots, K_{2}. end{array}right.$$&lt;/span&gt;(3)&lt;p&gt;Incorrect equation (4)&lt;/p&gt;&lt;span&gt;$$left{ begin{array}{ll} ll mathcal{L}(D, P, V, S, G) = &amp; frac{1}{2} left| Z - left(X^{D} D + X^{P}Pright) V - SGright|_{text{F}}^{2}+ &amp; frac{1}{2} lambda_{1} left( |D|^{2}_{text{F}} + |P|^{2}_{text{F}} + |V|^{2}_{text{F}}right) + &amp; lambda_{2} left[ frac{1}{2} (1 - alpha) | S |^{2}_{text{F}} + alpha|S|_{1}right] text{subject to} &amp; left| G_{2} right|_{2}^{2} leq c, forall k = 1, ldots, K_{2}, end{array}right.$$&lt;/span&gt;(4)&lt;p&gt;Correct equation (4)&lt;/p&gt;&lt;span&gt;$$left{ begin{array}{ll}mathcal{L}(D, P, V, S, G) = &amp; frac{1}{2} left| Z - left(X^{D} D + X^{P}Pright) V - SGright|_{text{F}}^{2}+ &amp; frac{1}{2} lambda_{1} left( |D|^{2}_{text{F}} + |P|^{2}_{text{F}} + |V|^{2}_{text{F}}right) + &amp; lambda_{2} left[ frac{1}{2} (1 - alpha) | S |^{2}_{text{F}} + alpha|S|_{1}right] text{subject to} &amp; left| G_{2} right|_{2}^{2} leq c, forall k = 1, ldots, K_{2}, end{array}right.$$&lt;/span&gt;(4)&lt;p&gt;Incorrect equation (10)&lt;/p&gt;&lt;span&gt;$$left{ begin{array}{ll} llmathcal{L}(V, G) = &amp; frac{1}{2k} sumnolimits_{j=1}^{k} left| Z_{I_{j}} - left( X_{I_{j}}^{D} D_{I_{j}} + X_{I_{j}}^{P} P_{I_{j}} right) V - S_{I_{j}} Gright|^{2}_{F} + &amp; frac{1}{2} lambda_{1} left[ frac{1}{k} sumnolimits_{j=1}^{k} left(left| D_{I_{j}} right|^{2}_{text{F}} + left| P_{I_{j}} right|^{2}_{F}right) + |V|^{2}_{F}right] + &","PeriodicalId":12611,"journal":{"name":"Genome Biology","volume":null,"pages":null},"PeriodicalIF":12.3,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142130682","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Author Correction: A benchmark of computational methods for correcting biases of established and unknown origin in CRISPR-Cas9 screening data 作者更正:校正 CRISPR-Cas9 筛选数据中已确定和未知来源偏差的计算方法基准
IF 12.3 1区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-09-04 DOI: 10.1186/s13059-024-03387-4
Alessandro Vinceti, Rafaele M. Iannuzzi, Isabella Boyle, Lucia Trastulla, Catarina D. Campbell, Francisca Vazquez, Joshua M. Dempster, Francesco Iorio
<p><b>Correction</b><b>: </b><b>Genome Biol 25, 192 (2024)</b></p><p><b>https://doi.org/10.1186/s13059-024-03336-1</b></p><br/><p>Following publication of the original article [1], the authors identified an omission in the completing interests section. The omitted text is given in bold below.</p><p><b>Competing interests</b></p><p>FI receives funding from Open Targets, a public-private initiative involving academia and industry and performs consultancy for the joint CRUK-AstraZeneca Functional Genomics Centre and for Mosaic TX. JD is a consultant for and holds equity in Jumble Therapeutics. CDC performs consultancy for Droplet Biosciences and is a shareholder of Novartis. <b>FV receives research support from the Dependency Map Consortium, Riva Therapeutics, Bristol Myers Squibb, Merck, Illumina, and Deerfield Management. FV is on the scientific advisory board of GSK, is a consultant and holds equity in Riva Therapeutics and is a co-founder and holds equity in Jumble Therapeutics</b>. All other authors declare that they have no competing interests.</p><p>The original article [1] is corrected.</p><ol data-track-component="outbound reference" data-track-context="references section"><li data-counter="1."><p>Vinceti A, Iannuzzi RM, Boyle I, et al. A benchmark of computational methods for correcting biases of established and unknown origin in CRISPR-Cas9 screening data. Genome Biol. 2024;25:192. https://doi.org/10.1186/s13059-024-03336-1.</p><p>Article PubMed PubMed Central Google Scholar </p></li></ol><p>Download references<svg aria-hidden="true" focusable="false" height="16" role="img" width="16"><use xlink:href="#icon-eds-i-download-medium" xmlns:xlink="http://www.w3.org/1999/xlink"></use></svg></p><h3>Authors and Affiliations</h3><ol><li><p>Computational Biology Research Centre, Human Technopole, Milan, Italy</p><p>Alessandro Vinceti, Rafaele M. Iannuzzi, Lucia Trastulla & Francesco Iorio</p></li><li><p>Broad Institute of Harvard and MIT, Cambridge, MA, USA</p><p>Isabella Boyle, Catarina D. Campbell, Francisca Vazquez & Joshua M. Dempster</p></li></ol><span>Authors</span><ol><li><span>Alessandro Vinceti</span>View author publications<p>You can also search for this author in <span>PubMed<span> </span>Google Scholar</span></p></li><li><span>Rafaele M. Iannuzzi</span>View author publications<p>You can also search for this author in <span>PubMed<span> </span>Google Scholar</span></p></li><li><span>Isabella Boyle</span>View author publications<p>You can also search for this author in <span>PubMed<span> </span>Google Scholar</span></p></li><li><span>Lucia Trastulla</span>View author publications<p>You can also search for this author in <span>PubMed<span> </span>Google Scholar</span></p></li><li><span>Catarina D. Campbell</span>View author publications<p>You can also search for this author in <span>PubMed<span> </span>Google Scholar</span></p></li><li><span>Francisca Vazquez</span>View author publications<p>You can also search for this author in <
更正:Genome Biol 25, 192 (2024)https://doi.org/10.1186/s13059-024-03336-1Following 原文[1]发表后,作者发现利益完成部分有一处遗漏。竞争利益FI接受学术界和工业界共同参与的公私合作计划 Open Targets 的资助,并为 CRUK-AstraZeneca 联合功能基因组学中心和 Mosaic TX 提供咨询服务。JD 是 Jumble Therapeutics 的顾问并持有其股份。CDC 为 Droplet Biosciences 提供顾问服务,并且是诺华公司的股东。FV 从依赖性图谱联盟(Dependency Map Consortium)、Riva Therapeutics、Bristol Myers Squibb、Merck、Illumina 和 Deerfield Management 获得研究支持。FV 是葛兰素史克公司的科学顾问委员会成员,是 Riva Therapeutics 公司的顾问并持有该公司的股份,还是 Jumble Therapeutics 公司的联合创始人并持有该公司的股份。原文[1]已更正。A benchmark of computational methods for correcting biases of established and unknown origin in CRISPR-Cas9 screening data.Genome Biol. 2024;25:192. https://doi.org/10.1186/s13059-024-03336-1.Article PubMed PubMed Central Google Scholar Download references作者和单位意大利米兰人类技术中心计算生物学研究中心Alessandro Vinceti, Rafaele M. Iannuzzi, Lucia Trastulla & Francesco Iorio美国马萨诸塞州剑桥市哈佛和麻省理工学院布罗德研究所Isabella Boyle, Catarina D. Campbell, Francisca Vazquez & Joshua M. DempsterDempsterAuthorsAlessandro VincetiView Author publications您也可以在PubMed Google Scholar中搜索该作者Rafaele M. IannuzziView Author publications您也可以在PubMed Google Scholar中搜索该作者Isabella BoyleView Author publications您也可以在PubMed Google Scholar中搜索该作者Lucia TrastullaView Author publications您也可以在PubMed Google Scholar中搜索该作者Catarina D. CampbellCampbellView author publications您也可以在PubMed Google Scholar中搜索该作者Francisca VazquezView author publications您也可以在PubMed Google Scholar中搜索该作者Joshua M. DempsterView author publications您也可以在PubMed Google Scholar中搜索该作者Francesco IorioView author publications您也可以在PubMed Google Scholar中搜索该作者Corresponding authorCorrespondence to Francesco Iorio.开放存取 本文采用知识共享署名 4.0 国际许可协议进行许可,该协议允许以任何媒介或格式使用、共享、改编、分发和复制本文,但须注明原作者和出处,提供知识共享许可协议链接,并说明是否进行了修改。本文中的图片或其他第三方材料均包含在文章的知识共享许可协议中,除非在材料的署名栏中另有说明。如果材料未包含在文章的知识共享许可协议中,且您打算使用的材料不符合法律规定或超出许可使用范围,则您需要直接从版权所有者处获得许可。要查看该许可的副本,请访问 http://creativecommons.org/licenses/by/4.0/。除非在数据的信用行中另有说明,否则知识共享公共领域专用免责声明 (http://creativecommons.org/publicdomain/zero/1.0/) 适用于本文提供的数据。转载与许可引用本文Vinceti, A., Iannuzzi, R.M., Boyle, I. et al. Author Correction:用于纠正 CRISPR-Cas9 筛选数据中已确定和未知来源偏差的计算方法基准。Genome Biol 25, 239 (2024). https://doi.org/10.1186/s13059-024-03387-4Download citationPublished: 04 September 2024DOI: https://doi.org/10.1186/s13059-024-03387-4Share this articleAnyone you share the following link with will be able to read this content:Get shareable linkSorry, a shareable link is not currently available for this article.Copy to clipboard Provided by the Springer Nature SharedIt content-sharing initiative.
{"title":"Author Correction: A benchmark of computational methods for correcting biases of established and unknown origin in CRISPR-Cas9 screening data","authors":"Alessandro Vinceti, Rafaele M. Iannuzzi, Isabella Boyle, Lucia Trastulla, Catarina D. Campbell, Francisca Vazquez, Joshua M. Dempster, Francesco Iorio","doi":"10.1186/s13059-024-03387-4","DOIUrl":"https://doi.org/10.1186/s13059-024-03387-4","url":null,"abstract":"&lt;p&gt;&lt;b&gt;Correction&lt;/b&gt;&lt;b&gt;: &lt;/b&gt;&lt;b&gt;Genome Biol 25, 192 (2024)&lt;/b&gt;&lt;/p&gt;&lt;p&gt;&lt;b&gt;https://doi.org/10.1186/s13059-024-03336-1&lt;/b&gt;&lt;/p&gt;&lt;br/&gt;&lt;p&gt;Following publication of the original article [1], the authors identified an omission in the completing interests section. The omitted text is given in bold below.&lt;/p&gt;&lt;p&gt;&lt;b&gt;Competing interests&lt;/b&gt;&lt;/p&gt;&lt;p&gt;FI receives funding from Open Targets, a public-private initiative involving academia and industry and performs consultancy for the joint CRUK-AstraZeneca Functional Genomics Centre and for Mosaic TX. JD is a consultant for and holds equity in Jumble Therapeutics. CDC performs consultancy for Droplet Biosciences and is a shareholder of Novartis. &lt;b&gt;FV receives research support from the Dependency Map Consortium, Riva Therapeutics, Bristol Myers Squibb, Merck, Illumina, and Deerfield Management. FV is on the scientific advisory board of GSK, is a consultant and holds equity in Riva Therapeutics and is a co-founder and holds equity in Jumble Therapeutics&lt;/b&gt;. All other authors declare that they have no competing interests.&lt;/p&gt;&lt;p&gt;The original article [1] is corrected.&lt;/p&gt;&lt;ol data-track-component=\"outbound reference\" data-track-context=\"references section\"&gt;&lt;li data-counter=\"1.\"&gt;&lt;p&gt;Vinceti A, Iannuzzi RM, Boyle I, et al. A benchmark of computational methods for correcting biases of established and unknown origin in CRISPR-Cas9 screening data. Genome Biol. 2024;25:192. https://doi.org/10.1186/s13059-024-03336-1.&lt;/p&gt;&lt;p&gt;Article PubMed PubMed Central Google Scholar &lt;/p&gt;&lt;/li&gt;&lt;/ol&gt;&lt;p&gt;Download references&lt;svg aria-hidden=\"true\" focusable=\"false\" height=\"16\" role=\"img\" width=\"16\"&gt;&lt;use xlink:href=\"#icon-eds-i-download-medium\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"&gt;&lt;/use&gt;&lt;/svg&gt;&lt;/p&gt;&lt;h3&gt;Authors and Affiliations&lt;/h3&gt;&lt;ol&gt;&lt;li&gt;&lt;p&gt;Computational Biology Research Centre, Human Technopole, Milan, Italy&lt;/p&gt;&lt;p&gt;Alessandro Vinceti, Rafaele M. Iannuzzi, Lucia Trastulla &amp; Francesco Iorio&lt;/p&gt;&lt;/li&gt;&lt;li&gt;&lt;p&gt;Broad Institute of Harvard and MIT, Cambridge, MA, USA&lt;/p&gt;&lt;p&gt;Isabella Boyle, Catarina D. Campbell, Francisca Vazquez &amp; Joshua M. Dempster&lt;/p&gt;&lt;/li&gt;&lt;/ol&gt;&lt;span&gt;Authors&lt;/span&gt;&lt;ol&gt;&lt;li&gt;&lt;span&gt;Alessandro Vinceti&lt;/span&gt;View author publications&lt;p&gt;You can also search for this author in &lt;span&gt;PubMed&lt;span&gt; &lt;/span&gt;Google Scholar&lt;/span&gt;&lt;/p&gt;&lt;/li&gt;&lt;li&gt;&lt;span&gt;Rafaele M. Iannuzzi&lt;/span&gt;View author publications&lt;p&gt;You can also search for this author in &lt;span&gt;PubMed&lt;span&gt; &lt;/span&gt;Google Scholar&lt;/span&gt;&lt;/p&gt;&lt;/li&gt;&lt;li&gt;&lt;span&gt;Isabella Boyle&lt;/span&gt;View author publications&lt;p&gt;You can also search for this author in &lt;span&gt;PubMed&lt;span&gt; &lt;/span&gt;Google Scholar&lt;/span&gt;&lt;/p&gt;&lt;/li&gt;&lt;li&gt;&lt;span&gt;Lucia Trastulla&lt;/span&gt;View author publications&lt;p&gt;You can also search for this author in &lt;span&gt;PubMed&lt;span&gt; &lt;/span&gt;Google Scholar&lt;/span&gt;&lt;/p&gt;&lt;/li&gt;&lt;li&gt;&lt;span&gt;Catarina D. Campbell&lt;/span&gt;View author publications&lt;p&gt;You can also search for this author in &lt;span&gt;PubMed&lt;span&gt; &lt;/span&gt;Google Scholar&lt;/span&gt;&lt;/p&gt;&lt;/li&gt;&lt;li&gt;&lt;span&gt;Francisca Vazquez&lt;/span&gt;View author publications&lt;p&gt;You can also search for this author in &lt;","PeriodicalId":12611,"journal":{"name":"Genome Biology","volume":null,"pages":null},"PeriodicalIF":12.3,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142130839","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Improved simultaneous mapping of epigenetic features and 3D chromatin structure via ViCAR 通过 ViCAR 改进表观遗传特征和三维染色质结构的同步绘图
IF 12.3 1区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-09-03 DOI: 10.1186/s13059-024-03377-6
Sean M. Flynn, Somdutta Dhir, Krzysztof Herka, Colm Doyle, Larry Melidis, Angela Simeone, Winnie W. I. Hui, Rafael de Cesaris Araujo Tavares, Stefan Schoenfelder, David Tannahill, Shankar Balasubramanian
Methods to measure chromatin contacts at genomic regions bound by histone modifications or proteins are important tools to investigate chromatin organization. However, such methods do not capture the possible involvement of other epigenomic features such as G-quadruplex DNA secondary structures (G4s). To bridge this gap, we introduce ViCAR (viewpoint HiCAR), for the direct antibody-based capture of chromatin interactions at folded G4s. Through ViCAR, we showcase the first G4-3D interaction landscape. Using histone marks, we also demonstrate how ViCAR improves on earlier approaches yielding increased signal-to-noise. ViCAR is a practical and powerful tool to explore epigenetic marks and 3D genome interactomes.
测量组蛋白修饰或蛋白质结合的基因组区域染色质接触的方法是研究染色质组织的重要工具。然而,这些方法并不能捕捉到其他表观基因组特征的可能参与,如 G-四叠体 DNA 二级结构(G4s)。为了弥补这一缺陷,我们推出了 ViCAR(观点 HiCAR),用于基于抗体直接捕获折叠 G4s 上的染色质相互作用。通过 ViCAR,我们首次展示了 G4-3D 相互作用图谱。通过组蛋白标记,我们还展示了 ViCAR 如何改进早期方法,提高信噪比。ViCAR 是探索表观遗传标记和三维基因组相互作用组的实用而强大的工具。
{"title":"Improved simultaneous mapping of epigenetic features and 3D chromatin structure via ViCAR","authors":"Sean M. Flynn, Somdutta Dhir, Krzysztof Herka, Colm Doyle, Larry Melidis, Angela Simeone, Winnie W. I. Hui, Rafael de Cesaris Araujo Tavares, Stefan Schoenfelder, David Tannahill, Shankar Balasubramanian","doi":"10.1186/s13059-024-03377-6","DOIUrl":"https://doi.org/10.1186/s13059-024-03377-6","url":null,"abstract":"Methods to measure chromatin contacts at genomic regions bound by histone modifications or proteins are important tools to investigate chromatin organization. However, such methods do not capture the possible involvement of other epigenomic features such as G-quadruplex DNA secondary structures (G4s). To bridge this gap, we introduce ViCAR (viewpoint HiCAR), for the direct antibody-based capture of chromatin interactions at folded G4s. Through ViCAR, we showcase the first G4-3D interaction landscape. Using histone marks, we also demonstrate how ViCAR improves on earlier approaches yielding increased signal-to-noise. ViCAR is a practical and powerful tool to explore epigenetic marks and 3D genome interactomes.","PeriodicalId":12611,"journal":{"name":"Genome Biology","volume":null,"pages":null},"PeriodicalIF":12.3,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142123681","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
RNAseqCovarImpute: a multiple imputation procedure that outperforms complete case and single imputation differential expression analysis RNAseqCovarImpute:一种多重估算程序,其效果优于完整病例和单一估算差异表达分析
IF 12.3 1区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-09-03 DOI: 10.1186/s13059-024-03376-7
Brennan H. Baker, Sheela Sathyanarayana, Adam A. Szpiro, James W. MacDonald, Alison G. Paquette
Missing covariate data is a common problem that has not been addressed in observational studies of gene expression. Here, we present a multiple imputation method that accommodates high dimensional gene expression data by incorporating principal component analysis of the transcriptome into the multiple imputation prediction models to avoid bias. Simulation studies using three datasets show that this method outperforms complete case and single imputation analyses at uncovering true positive differentially expressed genes, limiting false discovery rates, and minimizing bias. This method is easily implemented via an R Bioconductor package, RNAseqCovarImpute that integrates with the limma-voom pipeline for differential expression analysis.
协变量数据缺失是基因表达观测研究中尚未解决的一个常见问题。在这里,我们提出了一种多重估算方法,通过将转录组的主成分分析纳入多重估算预测模型来避免偏差,从而适应高维基因表达数据。使用三个数据集进行的模拟研究表明,该方法在发现真正的阳性差异表达基因、限制误发现率和最小化偏倚方面优于完全情况分析和单一归因分析。这种方法可通过 R Bioconductor 软件包 RNAseqCovarImpute 轻松实现,该软件包可与 limma-voom 差异表达分析管道集成。
{"title":"RNAseqCovarImpute: a multiple imputation procedure that outperforms complete case and single imputation differential expression analysis","authors":"Brennan H. Baker, Sheela Sathyanarayana, Adam A. Szpiro, James W. MacDonald, Alison G. Paquette","doi":"10.1186/s13059-024-03376-7","DOIUrl":"https://doi.org/10.1186/s13059-024-03376-7","url":null,"abstract":"Missing covariate data is a common problem that has not been addressed in observational studies of gene expression. Here, we present a multiple imputation method that accommodates high dimensional gene expression data by incorporating principal component analysis of the transcriptome into the multiple imputation prediction models to avoid bias. Simulation studies using three datasets show that this method outperforms complete case and single imputation analyses at uncovering true positive differentially expressed genes, limiting false discovery rates, and minimizing bias. This method is easily implemented via an R Bioconductor package, RNAseqCovarImpute that integrates with the limma-voom pipeline for differential expression analysis.\u0000","PeriodicalId":12611,"journal":{"name":"Genome Biology","volume":null,"pages":null},"PeriodicalIF":12.3,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142123682","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhlink infers distal and context-specific enhancer–promoter linkages Enhlink推断远端和特定语境的增强子-启动子连接
IF 12.3 1区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-09-02 DOI: 10.1186/s13059-024-03374-9
Olivier B. Poirion, Wulin Zuo, Catrina Spruce, Candice N. Baker, Sandra L. Daigle, Ashley Olson, Daniel A. Skelly, Elissa J. Chesler, Christopher L. Baker, Brian S. White
Enhlink is a computational tool for scATAC-seq data analysis, facilitating precise interrogation of enhancer function at the single-cell level. It employs an ensemble approach incorporating technical and biological covariates to infer condition-specific regulatory DNA linkages. Enhlink can integrate multi-omic data for enhanced specificity, when available. Evaluation with simulated and real data, including multi-omic datasets from the mouse striatum and novel promoter capture Hi-C data, demonstrate that Enhlink outperfoms alternative methods. Coupled with eQTL analysis, it identified a putative super-enhancer in striatal neurons. Overall, Enhlink offers accuracy, power, and potential for revealing novel biological insights in gene regulation.
Enhlink 是一种用于 scATAC-seq 数据分析的计算工具,有助于在单细胞水平上精确检测增强子的功能。它采用一种包含技术和生物协变量的集合方法来推断特定条件下的 DNA 连接调控。如果有多组数据,Enhlink 还能整合多组数据,以提高特异性。利用模拟数据和真实数据(包括来自小鼠纹状体的多组数据集和新型启动子捕获 Hi-C 数据)进行的评估表明,Enhlink 优于其他方法。结合 eQTL 分析,它在纹状体神经元中发现了一个潜在的超级增强子。总之,Enhlink 在揭示基因调控的新生物学见解方面具有准确性、强大的功能和潜力。
{"title":"Enhlink infers distal and context-specific enhancer–promoter linkages","authors":"Olivier B. Poirion, Wulin Zuo, Catrina Spruce, Candice N. Baker, Sandra L. Daigle, Ashley Olson, Daniel A. Skelly, Elissa J. Chesler, Christopher L. Baker, Brian S. White","doi":"10.1186/s13059-024-03374-9","DOIUrl":"https://doi.org/10.1186/s13059-024-03374-9","url":null,"abstract":"Enhlink is a computational tool for scATAC-seq data analysis, facilitating precise interrogation of enhancer function at the single-cell level. It employs an ensemble approach incorporating technical and biological covariates to infer condition-specific regulatory DNA linkages. Enhlink can integrate multi-omic data for enhanced specificity, when available. Evaluation with simulated and real data, including multi-omic datasets from the mouse striatum and novel promoter capture Hi-C data, demonstrate that Enhlink outperfoms alternative methods. Coupled with eQTL analysis, it identified a putative super-enhancer in striatal neurons. Overall, Enhlink offers accuracy, power, and potential for revealing novel biological insights in gene regulation.\u0000","PeriodicalId":12611,"journal":{"name":"Genome Biology","volume":null,"pages":null},"PeriodicalIF":12.3,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142118216","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Genome Biology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1