Sujuan Hu, Wenbin Xiang, Baiquan Liu, Lingjiao Zhang, Genghui Zhang, Min Guo, Jinhu Yang, Yunfei Ren, Junhong Yu, Zhenyu Yang, Huayu Gao, Jing Wang, Qifan Xue, Fion Sze Yan Yeung, Jiayu Zhang, Hoi Sing Kwok, Chuan Liu
{"title":"Exciton control enables high-performance colloidal quantum well light-emitting diodes","authors":"Sujuan Hu, Wenbin Xiang, Baiquan Liu, Lingjiao Zhang, Genghui Zhang, Min Guo, Jinhu Yang, Yunfei Ren, Junhong Yu, Zhenyu Yang, Huayu Gao, Jing Wang, Qifan Xue, Fion Sze Yan Yeung, Jiayu Zhang, Hoi Sing Kwok, Chuan Liu","doi":"10.1063/5.0206176","DOIUrl":null,"url":null,"abstract":"Two-dimensional (2D) nanocrystals are promising for optoelectronic and microelectronic technologies. However, the performance of 2D nanocrystal light-emitting diodes (LEDs) remains limited. Here, exciton dynamics are rationally controlled by both shell engineering and device engineering, obtaining colloidal quantum well LEDs (CQW-LEDs) with superior performance. The formation of CQW films on charge transport layers shows an excellent photoluminescence quantum yield of 76.63%. An unreported relationship among Auger lifetime, electron confinement energy, and external quantum efficiency (EQE) in 2D nanocrystal devices is directly observed. The optimized CQW-LEDs possess a maximum power efficiency of 6.04 lm W−1 and a current efficiency of 9.20 cd A−1, setting record efficiencies for 2D nanocrystal red LEDs. Additionally, a remarkable EQE of 13.43% has been achieved, accompanied by an exceptionally low efficiency roll-off. Significantly, EQE for flexible CQW-LEDs is 42-fold higher than the previous best results. Furthermore, active-matrix CQW-LEDs on printed circuit boards are developed. The findings not only unlock new possibilities for controlling exciton dynamics but also provide an alternative strategy to achieve high-performance 2D nanocrystal based applications.","PeriodicalId":8200,"journal":{"name":"Applied physics reviews","volume":"17 1","pages":""},"PeriodicalIF":11.9000,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied physics reviews","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/5.0206176","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Two-dimensional (2D) nanocrystals are promising for optoelectronic and microelectronic technologies. However, the performance of 2D nanocrystal light-emitting diodes (LEDs) remains limited. Here, exciton dynamics are rationally controlled by both shell engineering and device engineering, obtaining colloidal quantum well LEDs (CQW-LEDs) with superior performance. The formation of CQW films on charge transport layers shows an excellent photoluminescence quantum yield of 76.63%. An unreported relationship among Auger lifetime, electron confinement energy, and external quantum efficiency (EQE) in 2D nanocrystal devices is directly observed. The optimized CQW-LEDs possess a maximum power efficiency of 6.04 lm W−1 and a current efficiency of 9.20 cd A−1, setting record efficiencies for 2D nanocrystal red LEDs. Additionally, a remarkable EQE of 13.43% has been achieved, accompanied by an exceptionally low efficiency roll-off. Significantly, EQE for flexible CQW-LEDs is 42-fold higher than the previous best results. Furthermore, active-matrix CQW-LEDs on printed circuit boards are developed. The findings not only unlock new possibilities for controlling exciton dynamics but also provide an alternative strategy to achieve high-performance 2D nanocrystal based applications.
期刊介绍:
Applied Physics Reviews (APR) is a journal featuring articles on critical topics in experimental or theoretical research in applied physics and applications of physics to other scientific and engineering branches. The publication includes two main types of articles:
Original Research: These articles report on high-quality, novel research studies that are of significant interest to the applied physics community.
Reviews: Review articles in APR can either be authoritative and comprehensive assessments of established areas of applied physics or short, timely reviews of recent advances in established fields or emerging areas of applied physics.