Inferring Binary Properties from Gravitational-Wave Signals

IF 9.1 2区 物理与天体物理 Q1 PHYSICS, NUCLEAR Annual Review of Nuclear and Particle Science Pub Date : 2024-06-19 DOI:10.1146/annurev-nucl-121423-100725
Javier Roulet, Tejaswi Venumadhav
{"title":"Inferring Binary Properties from Gravitational-Wave Signals","authors":"Javier Roulet, Tejaswi Venumadhav","doi":"10.1146/annurev-nucl-121423-100725","DOIUrl":null,"url":null,"abstract":"This review provides a conceptual and technical survey of methods for parameter estimation of gravitational-wave signals in ground-based interferometers such as Laser Interferometer Gravitational-Wave Observatory (LIGO) and Virgo. We introduce the framework of Bayesian inference and provide an overview of models for the generation and detection of gravitational waves from compact binary mergers, focusing on the essential features that are observable in the signals. Within the traditional likelihood-based paradigm, we describe various approaches for enhancing the efficiency and robustness of parameter inference. This includes techniques for accelerating likelihood evaluations, such as heterodyne/relative binning, reduced-order quadrature, multibanding, and interpolation. We also cover methods to simplify the analysis to improve convergence, via reparameterization, importance sampling, and marginalization. We end with a discussion of recent developments in the application of likelihood-free (simulation-based) inference methods to gravitational-wave data analysis.","PeriodicalId":8090,"journal":{"name":"Annual Review of Nuclear and Particle Science","volume":"17 1","pages":""},"PeriodicalIF":9.1000,"publicationDate":"2024-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Review of Nuclear and Particle Science","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1146/annurev-nucl-121423-100725","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, NUCLEAR","Score":null,"Total":0}
引用次数: 0

Abstract

This review provides a conceptual and technical survey of methods for parameter estimation of gravitational-wave signals in ground-based interferometers such as Laser Interferometer Gravitational-Wave Observatory (LIGO) and Virgo. We introduce the framework of Bayesian inference and provide an overview of models for the generation and detection of gravitational waves from compact binary mergers, focusing on the essential features that are observable in the signals. Within the traditional likelihood-based paradigm, we describe various approaches for enhancing the efficiency and robustness of parameter inference. This includes techniques for accelerating likelihood evaluations, such as heterodyne/relative binning, reduced-order quadrature, multibanding, and interpolation. We also cover methods to simplify the analysis to improve convergence, via reparameterization, importance sampling, and marginalization. We end with a discussion of recent developments in the application of likelihood-free (simulation-based) inference methods to gravitational-wave data analysis.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
从引力波信号推断双星属性
这篇综述从概念和技术角度对激光干涉引力波天文台(LIGO)和室女座等地基干涉仪的引力波信号参数估计方法进行了研究。我们介绍了贝叶斯推理框架,并概述了紧凑型双星合并产生和探测引力波的模型,重点是信号中可观测到的基本特征。在传统的基于似然法的范式中,我们介绍了提高参数推断效率和稳健性的各种方法。这包括加速似然评估的技术,如异频/相对分档、降阶正交、多频带和插值。我们还介绍了通过重参数化、重要性采样和边际化来简化分析以提高收敛性的方法。最后,我们将讨论无似然(基于模拟)推理方法在引力波数据分析中应用的最新进展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
21.50
自引率
0.80%
发文量
18
期刊介绍: The Annual Review of Nuclear and Particle Science is a publication that has been available since 1952. It focuses on various aspects of nuclear and particle science, including both theoretical and experimental developments. The journal covers topics such as nuclear structure, heavy ion interactions, oscillations observed in solar and atmospheric neutrinos, the physics of heavy quarks, the impact of particle and nuclear physics on astroparticle physics, and recent advancements in accelerator design and instrumentation. One significant recent change in the journal is the conversion of its current volume from gated to open access. This conversion was made possible through Annual Reviews' Subscribe to Open program. As a result, all articles published in the current volume are now freely available to the public under a CC BY license. This change allows for greater accessibility and dissemination of research in the field of nuclear and particle science.
期刊最新文献
High-Luminosity B Factory e+e− Colliders Multiwavelength and Multimessenger Counterparts of Fast Radio Bursts High-Field Magnets for Future Hadron Colliders Machine Learning for Design and Control of Particle Accelerators: A Look Backward and Forward Concepts for Neutrino Applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1