Asymmetric active sites originate from high-entropy metal selenides by joule heating to boost electrocatalytic water oxidation

IF 38.6 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Joule Pub Date : 2024-08-21 DOI:10.1016/j.joule.2024.06.004
{"title":"Asymmetric active sites originate from high-entropy metal selenides by joule heating to boost electrocatalytic water oxidation","authors":"","doi":"10.1016/j.joule.2024.06.004","DOIUrl":null,"url":null,"abstract":"<div><p><span><span>High-entropy materials (HEMs) have garnered tremendous attention for electrocatalytic water oxidation because of their extraordinary properties. Nevertheless, scant attention has been directed toward comprehending the origin of their excellent activity and intricate atomic arrangements. Herein, we demonstrate the synthesis of high-entropy metal </span>selenides (HEMSs) using a rapid joule-heating method, effectively circumventing the immiscibility challenges inherent in combining multiple metal elements. This achievement is collectively verified by a convergence of diverse analytical techniques encompassing quasi </span><em>in situ</em><span> X-ray absorption spectroscopy and </span><span><em>operando</em></span><span> attenuated total reflectance infrared spectroscopy. The HEMS exhibits a low overpotential of 222 mV at 10 mA cm</span><sup>−2</sup> and extraordinary durability with negligible degradation over a 1,000 h durability test at 10 mA cm<sup>−2</sup> and 500 h at 100 mA cm<sup>−2</sup><span>. Further, our theoretical investigations establish the pronounced mechanism of asymmetric Cu-Co-Ni active units in HEMS by manipulating the interaction of oxygen-containing intermediates, which leads to enhanced OER activity and durability.</span></p></div>","PeriodicalId":343,"journal":{"name":"Joule","volume":"8 8","pages":"Pages 2342-2356"},"PeriodicalIF":38.6000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Joule","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2542435124002526","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

High-entropy materials (HEMs) have garnered tremendous attention for electrocatalytic water oxidation because of their extraordinary properties. Nevertheless, scant attention has been directed toward comprehending the origin of their excellent activity and intricate atomic arrangements. Herein, we demonstrate the synthesis of high-entropy metal selenides (HEMSs) using a rapid joule-heating method, effectively circumventing the immiscibility challenges inherent in combining multiple metal elements. This achievement is collectively verified by a convergence of diverse analytical techniques encompassing quasi in situ X-ray absorption spectroscopy and operando attenuated total reflectance infrared spectroscopy. The HEMS exhibits a low overpotential of 222 mV at 10 mA cm−2 and extraordinary durability with negligible degradation over a 1,000 h durability test at 10 mA cm−2 and 500 h at 100 mA cm−2. Further, our theoretical investigations establish the pronounced mechanism of asymmetric Cu-Co-Ni active units in HEMS by manipulating the interaction of oxygen-containing intermediates, which leads to enhanced OER activity and durability.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过焦耳加热从高熵金属硒化物中产生不对称活性位点,促进电催化水氧化
高熵材料(HEMs)因其非凡的特性,在电催化水氧化方面获得了极大的关注。然而,人们很少关注其卓越活性和复杂原子排列的起源。在本文中,我们展示了利用快速焦耳加热法合成高熵金属硒化物(HEMSs)的过程,有效地规避了多种金属元素结合所固有的不溶性难题。准原位 X 射线吸收光谱和操作衰减全反射红外光谱等多种分析技术的融合共同验证了这一成果。在 10 mA cm-2 条件下,HEMS 的过电位很低,仅为 222 mV;在 10 mA cm-2 条件下,HEMS 的耐久性测试时间为 1,000 小时,在 100 mA cm-2 条件下,HEMS 的耐久性测试时间为 500 小时,降解几乎可以忽略不计。此外,我们的理论研究通过操纵含氧中间体的相互作用,确立了 HEMS 中不对称铜-铜-镍活性单元的显著机理,从而提高了 OER 的活性和耐用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Joule
Joule Energy-General Energy
CiteScore
53.10
自引率
2.00%
发文量
198
期刊介绍: Joule is a sister journal to Cell that focuses on research, analysis, and ideas related to sustainable energy. It aims to address the global challenge of the need for more sustainable energy solutions. Joule is a forward-looking journal that bridges disciplines and scales of energy research. It connects researchers and analysts working on scientific, technical, economic, policy, and social challenges related to sustainable energy. The journal covers a wide range of energy research, from fundamental laboratory studies on energy conversion and storage to global-level analysis. Joule aims to highlight and amplify the implications, challenges, and opportunities of novel energy research for different groups in the field.
期刊最新文献
Spin regulation through chirality in catalysis Battery health management in the era of big field data Anthracene-based energy storage Technoeconomic analysis of perovskite/silicon tandem solar modules De-doping engineering for efficient and heat-stable perovskite solar cells
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1