Nanochannel electrodes facilitating interfacial transport for PEM water electrolysis

IF 38.6 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Joule Pub Date : 2024-06-25 DOI:10.1016/j.joule.2024.06.005
Jason K. Lee, Finn Babbe, Guanzhi Wang, Andrew W. Tricker, Rangachary Mukundan, Adam Z. Weber, Xiong Peng
{"title":"Nanochannel electrodes facilitating interfacial transport for PEM water electrolysis","authors":"Jason K. Lee, Finn Babbe, Guanzhi Wang, Andrew W. Tricker, Rangachary Mukundan, Adam Z. Weber, Xiong Peng","doi":"10.1016/j.joule.2024.06.005","DOIUrl":null,"url":null,"abstract":"<p>Proton-exchange membrane water electrolyzers (PEMWEs) are a promising technology for green hydrogen production; however, interfacial transport behaviors are poorly understood, hindering device performance and longevity. Here, we first utilized finite-gap electrolyzer to demonstrate the possibility of proton transfer through water in PEMWEs. The measured high-frequency resistances (HFRs) exhibit a linear trend with increasing gap distance, where extrapolation shows a lower value compared with HFRs in regular zero-gap electrolyzers, indicating that ohmic resistance could be further reduced. We introduce nanochannels to facilitate mass transport, as evidenced by both liquid-fed and vapor-fed electrolysis. Nanochannel electrodes achieve a voltage reduction of 190 mV at 9 A·cm<sup>−2</sup> compared with the Ir-PTEs without nanochannels. Furthermore, nanochannel electrodes show negligible degradation through 100,000 accelerated-stress tests and over 2,000 h of operation at 1.8 A·cm<sup>−2</sup> with a decay rate of 11.66 μV·h<sup>−1</sup>. These results provide new insights into localized transport dynamics for PEMWEs and highlight the significance of interfacial engineering for electrochemical devices.</p>","PeriodicalId":343,"journal":{"name":"Joule","volume":null,"pages":null},"PeriodicalIF":38.6000,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Joule","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.joule.2024.06.005","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Proton-exchange membrane water electrolyzers (PEMWEs) are a promising technology for green hydrogen production; however, interfacial transport behaviors are poorly understood, hindering device performance and longevity. Here, we first utilized finite-gap electrolyzer to demonstrate the possibility of proton transfer through water in PEMWEs. The measured high-frequency resistances (HFRs) exhibit a linear trend with increasing gap distance, where extrapolation shows a lower value compared with HFRs in regular zero-gap electrolyzers, indicating that ohmic resistance could be further reduced. We introduce nanochannels to facilitate mass transport, as evidenced by both liquid-fed and vapor-fed electrolysis. Nanochannel electrodes achieve a voltage reduction of 190 mV at 9 A·cm−2 compared with the Ir-PTEs without nanochannels. Furthermore, nanochannel electrodes show negligible degradation through 100,000 accelerated-stress tests and over 2,000 h of operation at 1.8 A·cm−2 with a decay rate of 11.66 μV·h−1. These results provide new insights into localized transport dynamics for PEMWEs and highlight the significance of interfacial engineering for electrochemical devices.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
促进 PEM 水电解界面传输的纳米通道电极
质子交换膜水电解槽(PEMWEs)是一种前景广阔的绿色制氢技术;然而,人们对其界面传输行为知之甚少,从而影响了设备的性能和寿命。在这里,我们首次利用有限间隙电解槽证明了质子在 PEMWEs 中通过水传输的可能性。测得的高频电阻(HFR)随着间隙距离的增加呈线性趋势,外推法显示,与普通零间隙电解槽中的高频电阻相比,高频电阻值更低,这表明欧姆电阻可以进一步降低。我们引入了纳米通道来促进质量传输,这在液体馈电和蒸汽馈电电解中都得到了证明。与不带纳米通道的 Ir-PTE 相比,纳米通道电极在 9 A-cm-2 的电压下可降低 190 mV。此外,纳米沟道电极在 1.8 A-cm-2 下经过 100,000 次加速应力测试和超过 2,000 小时的运行后,衰减率为 11.66 μV-h-1,可以忽略不计。这些结果为 PEMWEs 的局部传输动力学提供了新的见解,并突出了界面工程对电化学设备的重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Joule
Joule Energy-General Energy
CiteScore
53.10
自引率
2.00%
发文量
198
期刊介绍: Joule is a sister journal to Cell that focuses on research, analysis, and ideas related to sustainable energy. It aims to address the global challenge of the need for more sustainable energy solutions. Joule is a forward-looking journal that bridges disciplines and scales of energy research. It connects researchers and analysts working on scientific, technical, economic, policy, and social challenges related to sustainable energy. The journal covers a wide range of energy research, from fundamental laboratory studies on energy conversion and storage to global-level analysis. Joule aims to highlight and amplify the implications, challenges, and opportunities of novel energy research for different groups in the field.
期刊最新文献
A polymer bilayer hole transporting layer architecture for high-efficiency and stable organic solar cells A polymer acceptor with double-decker configuration enhances molecular packing for high-performance all-polymer solar cells Stabilizing efficient wide-bandgap perovskite in perovskite-organic tandem solar cells Recognition and evaluation in voluntary renewable energy markets Some remaining puzzles in hydrogen electrocatalysis mechanisms on platinum surfaces
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1