Annamarija Trausa, Sven Oras, Sergei Vlassov, Mikk Antsov, Tauno Tiirats, Andreas Kyritsakis, Boris Polyakov, Edgars Butanovs
{"title":"Elastic modulus of β-Ga<sub>2</sub>O<sub>3</sub> nanowires measured by resonance and three-point bending techniques.","authors":"Annamarija Trausa, Sven Oras, Sergei Vlassov, Mikk Antsov, Tauno Tiirats, Andreas Kyritsakis, Boris Polyakov, Edgars Butanovs","doi":"10.3762/bjnano.15.58","DOIUrl":null,"url":null,"abstract":"<p><p>Due to the recent interest in ultrawide bandgap β-Ga<sub>2</sub>O<sub>3</sub> thin films and nanostructures for various electronics and UV device applications, it is important to understand the mechanical properties of Ga<sub>2</sub>O<sub>3</sub> nanowires (NWs). In this work, we investigated the elastic modulus of individual β-Ga<sub>2</sub>O<sub>3</sub> NWs using two distinct techniques - in-situ scanning electron microscopy resonance and three-point bending in atomic force microscopy. The structural and morphological properties of the synthesised NWs were investigated using X-ray diffraction, transmission and scanning electron microscopies. The resonance tests yielded the mean elastic modulus of 34.5 GPa, while 75.8 GPa mean value was obtained via three-point bending. The measured elastic moduli values indicate the need for finely controllable β-Ga<sub>2</sub>O<sub>3</sub> NW synthesis methods and detailed post-examination of their mechanical properties before considering their application in future nanoscale devices.</p>","PeriodicalId":8802,"journal":{"name":"Beilstein Journal of Nanotechnology","volume":"15 ","pages":"704-712"},"PeriodicalIF":2.6000,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11196948/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Beilstein Journal of Nanotechnology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3762/bjnano.15.58","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Due to the recent interest in ultrawide bandgap β-Ga2O3 thin films and nanostructures for various electronics and UV device applications, it is important to understand the mechanical properties of Ga2O3 nanowires (NWs). In this work, we investigated the elastic modulus of individual β-Ga2O3 NWs using two distinct techniques - in-situ scanning electron microscopy resonance and three-point bending in atomic force microscopy. The structural and morphological properties of the synthesised NWs were investigated using X-ray diffraction, transmission and scanning electron microscopies. The resonance tests yielded the mean elastic modulus of 34.5 GPa, while 75.8 GPa mean value was obtained via three-point bending. The measured elastic moduli values indicate the need for finely controllable β-Ga2O3 NW synthesis methods and detailed post-examination of their mechanical properties before considering their application in future nanoscale devices.
期刊介绍:
The Beilstein Journal of Nanotechnology is an international, peer-reviewed, Open Access journal. It provides a unique platform for rapid publication without any charges (free for author and reader) – Platinum Open Access. The content is freely accessible 365 days a year to any user worldwide. Articles are available online immediately upon publication and are publicly archived in all major repositories. In addition, it provides a platform for publishing thematic issues (theme-based collections of articles) on topical issues in nanoscience and nanotechnology.
The journal is published and completely funded by the Beilstein-Institut, a non-profit foundation located in Frankfurt am Main, Germany. The editor-in-chief is Professor Thomas Schimmel – Karlsruhe Institute of Technology. He is supported by more than 20 associate editors who are responsible for a particular subject area within the scope of the journal.