Multi-omics analysis sandbox toolkit for swift derivations of clinically relevant genesets and biomarkers.

IF 2.9 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY BMB Reports Pub Date : 2024-06-26
Jin-Young Lee, Won Park, Hyunjoong Kim, Hong Seok Lee, Tae-Wook Kang, Dong-Hun Shin, Kyung Su Kim, Yoon Kyeong Lee, Seon-Young Kim, Ji Hwan Park, Young-Joon Kim
{"title":"Multi-omics analysis sandbox toolkit for swift derivations of clinically relevant genesets and biomarkers.","authors":"Jin-Young Lee, Won Park, Hyunjoong Kim, Hong Seok Lee, Tae-Wook Kang, Dong-Hun Shin, Kyung Su Kim, Yoon Kyeong Lee, Seon-Young Kim, Ji Hwan Park, Young-Joon Kim","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>The utilization of multi-omics research has gained popularity in clinical investigations. However, effectively managing and merging extensive and diverse datasets presents a challenge due to its intricacy. This research introduces a Multi-Omics Analysis Sandbox Toolkit, an online platform designed to facilitate the exploration, integration, and visualization of datasets ranging from single-omics to multi-omics. This platform establishes connections between clinical data and omics information, allowing for versatile analysis and storage of both single and multi-omics data. Additionally, users can repeatedly utilize and exchange their findings within the platform. This toolkit offers diverse alternatives for data selection and gene set analysis. It also presents visualization outputs, potential candidates, and annotations. Furthermore, this platform empowers users to collaborate by sharing their datasets, analyses, and conclusions with others, thus enhancing its utility as a collaborative research tool. This Multi-Omics Analysis Sandbox Toolkit stands as a valuable asset in comprehensively grasping the influence of diverse factors in diseases and pinpointing potential biomarkers.</p>","PeriodicalId":9010,"journal":{"name":"BMB Reports","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMB Reports","FirstCategoryId":"99","ListUrlMain":"","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The utilization of multi-omics research has gained popularity in clinical investigations. However, effectively managing and merging extensive and diverse datasets presents a challenge due to its intricacy. This research introduces a Multi-Omics Analysis Sandbox Toolkit, an online platform designed to facilitate the exploration, integration, and visualization of datasets ranging from single-omics to multi-omics. This platform establishes connections between clinical data and omics information, allowing for versatile analysis and storage of both single and multi-omics data. Additionally, users can repeatedly utilize and exchange their findings within the platform. This toolkit offers diverse alternatives for data selection and gene set analysis. It also presents visualization outputs, potential candidates, and annotations. Furthermore, this platform empowers users to collaborate by sharing their datasets, analyses, and conclusions with others, thus enhancing its utility as a collaborative research tool. This Multi-Omics Analysis Sandbox Toolkit stands as a valuable asset in comprehensively grasping the influence of diverse factors in diseases and pinpointing potential biomarkers.

分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
多组学分析沙盒工具包,用于快速推导临床相关基因组和生物标记物。
多组学研究在临床研究中越来越受欢迎。然而,由于数据集错综复杂,有效管理和合并广泛多样的数据集是一项挑战。本研究介绍了多组学分析沙盒工具包,这是一个在线平台,旨在促进从单组学到多组学数据集的探索、整合和可视化。该平台在临床数据和 omics 信息之间建立联系,允许对单组学和多组学数据进行多功能分析和存储。此外,用户还可以在平台内反复利用和交流他们的研究成果。该工具包为数据选择和基因组分析提供了多种选择。它还提供可视化输出、潜在候选基因和注释。此外,该平台还支持用户与他人共享数据集、分析结果和结论,从而提高其作为合作研究工具的实用性。这个多指标分析沙盒工具包是全面掌握疾病中各种因素的影响和精确定位潜在生物标记物的宝贵财富。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
BMB Reports
BMB Reports 生物-生化与分子生物学
CiteScore
5.10
自引率
7.90%
发文量
141
审稿时长
1 months
期刊介绍: The BMB Reports (BMB Rep, established in 1968) is published at the end of every month by Korean Society for Biochemistry and Molecular Biology. Copyright is reserved by the Society. The journal publishes short articles and mini reviews. We expect that the BMB Reports will deliver the new scientific findings and knowledge to our readers in fast and timely manner.
期刊最新文献
DNA regulatory element cooperation and competition in transcription. Antisense-mediated splicing correction as a therapeutic approach for p53 K120R mutation. Cereblon regulates the production of hepatic fibroblast growth factor 23 in diabetes. Differential roles of N- and C-terminal LIR motifs in the catalytic activity and membrane targeting of RavZ and ATG4B proteins. Specialized pro-resolving mediator 7S MaR1 inhibits IL-6 expression via modulating ROS/p38/ERK/NF-κB pathways in PM10-exposed keratinocytes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1