Jacqueline Olvera-Aripez, Santiago Camacho-López, Mariela Flores-Castañeda, Carlos Belman-Rodríguez, Alfredo R Vilchis-Nestor, Ernestina Castro-Longoria
{"title":"Biosynthesis of gold nanoparticles by fungi and its potential in SERS.","authors":"Jacqueline Olvera-Aripez, Santiago Camacho-López, Mariela Flores-Castañeda, Carlos Belman-Rodríguez, Alfredo R Vilchis-Nestor, Ernestina Castro-Longoria","doi":"10.1007/s00449-024-03053-w","DOIUrl":null,"url":null,"abstract":"<p><p>Surface enhanced Raman spectroscopy (SERS) by using gold nanoparticles (AuNPs) has gained relevance for the identification of biomolecules and some cancer cells. Searching for greener NPs synthesis alternatives, we evaluated the SERS properties of AuNPs produced by using different filamentous fungi. The AuNPs were synthesized utilizing the supernatant of Botrytis cinerea, Trichoderma atroviride, Trichoderma asperellum, Alternaria sp. and Ganoderma sessile. The AuNPs were characterized by ultraviolet-visible spectroscopy (UV-Vis) to identify its characteristic surface plasmon resonance, which was located at 545 nm (B. cinerea), 550 nm (T. atroviride), 540 nm (T. asperellum), 530 nm (Alternaria sp.), and 525 nm (G. sessile). Morphology, size and crystal structure were characterized through transmission electron microscopy (TEM); colloidal stability was assessed by Z-potential measurements. We found that, under specific incubation conditions, it was possible to obtain AuNPs with spherical and quasi-spherical shapes, which mean size range depends on the fungal species supernatant with 92.9 nm (B. cinerea), 24.7 nm (T. atroviride), 16.4 nm (T. asperellum), 9.5 nm (Alternaria sp.), and 13.6 nm (G. sessile). This, as it can be expected, has an effect on Raman amplification. A micro-Raman spectroscopy system operated at a wavelength of 532 nm was used for the evaluation of the SERS features of the AuNPs. We chose methylene blue as our target molecule since it has been widely used for such a purpose in the literature. Our results show that AuNPs synthesized with the supernatant of T. atroviride, T. asperellum and Alternaria sp. produce the stronger SERS effect, with enhancement factor (EF) of 20.9, 28.8 and 35.46, respectively. These results are promising and could serve as the base line for the development of biosensors through a facile, simple, and low-cost green alternative.</p>","PeriodicalId":9024,"journal":{"name":"Bioprocess and Biosystems Engineering","volume":" ","pages":"1585-1593"},"PeriodicalIF":3.5000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioprocess and Biosystems Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s00449-024-03053-w","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/26 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Surface enhanced Raman spectroscopy (SERS) by using gold nanoparticles (AuNPs) has gained relevance for the identification of biomolecules and some cancer cells. Searching for greener NPs synthesis alternatives, we evaluated the SERS properties of AuNPs produced by using different filamentous fungi. The AuNPs were synthesized utilizing the supernatant of Botrytis cinerea, Trichoderma atroviride, Trichoderma asperellum, Alternaria sp. and Ganoderma sessile. The AuNPs were characterized by ultraviolet-visible spectroscopy (UV-Vis) to identify its characteristic surface plasmon resonance, which was located at 545 nm (B. cinerea), 550 nm (T. atroviride), 540 nm (T. asperellum), 530 nm (Alternaria sp.), and 525 nm (G. sessile). Morphology, size and crystal structure were characterized through transmission electron microscopy (TEM); colloidal stability was assessed by Z-potential measurements. We found that, under specific incubation conditions, it was possible to obtain AuNPs with spherical and quasi-spherical shapes, which mean size range depends on the fungal species supernatant with 92.9 nm (B. cinerea), 24.7 nm (T. atroviride), 16.4 nm (T. asperellum), 9.5 nm (Alternaria sp.), and 13.6 nm (G. sessile). This, as it can be expected, has an effect on Raman amplification. A micro-Raman spectroscopy system operated at a wavelength of 532 nm was used for the evaluation of the SERS features of the AuNPs. We chose methylene blue as our target molecule since it has been widely used for such a purpose in the literature. Our results show that AuNPs synthesized with the supernatant of T. atroviride, T. asperellum and Alternaria sp. produce the stronger SERS effect, with enhancement factor (EF) of 20.9, 28.8 and 35.46, respectively. These results are promising and could serve as the base line for the development of biosensors through a facile, simple, and low-cost green alternative.
期刊介绍:
Bioprocess and Biosystems Engineering provides an international peer-reviewed forum to facilitate the discussion between engineering and biological science to find efficient solutions in the development and improvement of bioprocesses. The aim of the journal is to focus more attention on the multidisciplinary approaches for integrative bioprocess design. Of special interest are the rational manipulation of biosystems through metabolic engineering techniques to provide new biocatalysts as well as the model based design of bioprocesses (up-stream processing, bioreactor operation and downstream processing) that will lead to new and sustainable production processes.
Contributions are targeted at new approaches for rational and evolutive design of cellular systems by taking into account the environment and constraints of technical production processes, integration of recombinant technology and process design, as well as new hybrid intersections such as bioinformatics and process systems engineering. Manuscripts concerning the design, simulation, experimental validation, control, and economic as well as ecological evaluation of novel processes using biosystems or parts thereof (e.g., enzymes, microorganisms, mammalian cells, plant cells, or tissue), their related products, or technical devices are also encouraged.
The Editors will consider papers for publication based on novelty, their impact on biotechnological production and their contribution to the advancement of bioprocess and biosystems engineering science. Submission of papers dealing with routine aspects of bioprocess engineering (e.g., routine application of established methodologies, and description of established equipment) are discouraged.