{"title":"Characterization and trans-generation dynamics of mitogene pool in the silver carp (Hypophthalmichthys molitrix).","authors":"Jinlin Li, Hengshu Wu, Yingna Zhou, Manhong Liu, Yongheng Zhou, Jianing Chu, Elizabeth Kamili, Wenhui Wang, Jincheng Yang, Lijun Lin, Qi Zhang, Shuhui Yang, Yanchun Xu","doi":"10.1093/g3journal/jkae101","DOIUrl":null,"url":null,"abstract":"<p><p>Multicopied mitogenome are prone to mutation during replication often resulting in heteroplasmy. The derived variants in a cell, organ, or an individual animal constitute a mitogene pool. The individual mitogene pool is initiated by a small fraction of the egg mitogene pool. However, the characteristics and relationship between them has not yet been investigated. This study quantitatively analyzed the heteroplasmy landscape, genetic loads, and selection strength of the mitogene pool of egg and hatchling in the silver carp (Hypophthalmichthys molitrix) using high-throughput resequencing. The results showed heteroplasmic sites distribute across the whole mitogenome in both eggs and hatchlings. The dominant substitution was Transversion in eggs and Transition in hatching accounting for 95.23%±2.07% and 85.38%±6.94% of total HP sites, respectively. The total genetic loads were 0.293±0.044 in eggs and 0.228±0.022 in hatchlings (P=0.048). The dN/dS ratio was 58.03±38.98 for eggs and 9.44±3.93 for hatchlings (P=0.037). These results suggest that the mitogenomes were under strong positive selection in eggs with tolerance to variants with deleterious effects, while the selection was positive but much weaker in hatchlings showing marked quality control. Based on these findings, we proposed a trans-generation dynamics model to explain differential development mode of the two mitogene pool between oocyte maturation and ontogenesis of offspring. This study sheds light on significance of mitogene pool for persistence of populations and subsequent integration in ecological studies and conservation practices.</p>","PeriodicalId":12468,"journal":{"name":"G3: Genes|Genomes|Genetics","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11491513/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"G3: Genes|Genomes|Genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/g3journal/jkae101","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
Multicopied mitogenome are prone to mutation during replication often resulting in heteroplasmy. The derived variants in a cell, organ, or an individual animal constitute a mitogene pool. The individual mitogene pool is initiated by a small fraction of the egg mitogene pool. However, the characteristics and relationship between them has not yet been investigated. This study quantitatively analyzed the heteroplasmy landscape, genetic loads, and selection strength of the mitogene pool of egg and hatchling in the silver carp (Hypophthalmichthys molitrix) using high-throughput resequencing. The results showed heteroplasmic sites distribute across the whole mitogenome in both eggs and hatchlings. The dominant substitution was Transversion in eggs and Transition in hatching accounting for 95.23%±2.07% and 85.38%±6.94% of total HP sites, respectively. The total genetic loads were 0.293±0.044 in eggs and 0.228±0.022 in hatchlings (P=0.048). The dN/dS ratio was 58.03±38.98 for eggs and 9.44±3.93 for hatchlings (P=0.037). These results suggest that the mitogenomes were under strong positive selection in eggs with tolerance to variants with deleterious effects, while the selection was positive but much weaker in hatchlings showing marked quality control. Based on these findings, we proposed a trans-generation dynamics model to explain differential development mode of the two mitogene pool between oocyte maturation and ontogenesis of offspring. This study sheds light on significance of mitogene pool for persistence of populations and subsequent integration in ecological studies and conservation practices.
期刊介绍:
G3: Genes, Genomes, Genetics provides a forum for the publication of high‐quality foundational research, particularly research that generates useful genetic and genomic information such as genome maps, single gene studies, genome‐wide association and QTL studies, as well as genome reports, mutant screens, and advances in methods and technology. The Editorial Board of G3 believes that rapid dissemination of these data is the necessary foundation for analysis that leads to mechanistic insights.
G3, published by the Genetics Society of America, meets the critical and growing need of the genetics community for rapid review and publication of important results in all areas of genetics. G3 offers the opportunity to publish the puzzling finding or to present unpublished results that may not have been submitted for review and publication due to a perceived lack of a potential high-impact finding. G3 has earned the DOAJ Seal, which is a mark of certification for open access journals, awarded by DOAJ to journals that achieve a high level of openness, adhere to Best Practice and high publishing standards.