All-optical spin switching on an ultrafast time scale.

IF 2.3 4区 物理与天体物理 Q3 PHYSICS, CONDENSED MATTER Journal of Physics: Condensed Matter Pub Date : 2024-07-05 DOI:10.1088/1361-648X/ad5bae
Wolfgang Hübner, Georgios Lefkidis, G P Zhang
{"title":"All-optical spin switching on an ultrafast time scale.","authors":"Wolfgang Hübner, Georgios Lefkidis, G P Zhang","doi":"10.1088/1361-648X/ad5bae","DOIUrl":null,"url":null,"abstract":"<p><p>Information technology revolution demands bigger and faster magnetic storage. All-optical spin switching (AOS) may offer a solution, where an ultrafast laser pulse alone can switch magnetization from one direction to another faithfully within 1-10 ps, free of a magnetic field. There are two types of switching: One is the helicity-dependent all-optical spin switching (HD-AOS) and the other the helicity-independent all-optical spin switching (HID-AOS). In a few alloys, one single laser pulse, with sufficient fluence, can switch spin, but the majority of magnetic materials requires multiple pulses. Both material-specific and laser-specific properties strongly affect the switching process. However, the underlying mechanism is still under debate. As the entire research field moves toward applications, it is very appropriate to review what has been achieved in the last decade. This review covers some of the major experimental and theoretical developments within the last decade, and serves as an introduction to the uninitiated reader in this field and a summary for the seasoned researchers.</p>","PeriodicalId":16776,"journal":{"name":"Journal of Physics: Condensed Matter","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics: Condensed Matter","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1361-648X/ad5bae","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

Abstract

Information technology revolution demands bigger and faster magnetic storage. All-optical spin switching (AOS) may offer a solution, where an ultrafast laser pulse alone can switch magnetization from one direction to another faithfully within 1-10 ps, free of a magnetic field. There are two types of switching: One is the helicity-dependent all-optical spin switching (HD-AOS) and the other the helicity-independent all-optical spin switching (HID-AOS). In a few alloys, one single laser pulse, with sufficient fluence, can switch spin, but the majority of magnetic materials requires multiple pulses. Both material-specific and laser-specific properties strongly affect the switching process. However, the underlying mechanism is still under debate. As the entire research field moves toward applications, it is very appropriate to review what has been achieved in the last decade. This review covers some of the major experimental and theoretical developments within the last decade, and serves as an introduction to the uninitiated reader in this field and a summary for the seasoned researchers.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
超快时间尺度上的全光自旋开关
信息技术革命需要更大、更快的磁性存储技术。全光自旋切换(AOS)可能是一种解决方案,仅靠超快激光脉冲就能在1-10 ps内将磁化从一个方向忠实地切换到另一个方向,而且不受磁场的影响。这种切换有两种类型:一种是依赖螺旋的全光自旋切换(HD-AOS),另一种是不依赖螺旋的全光自旋切换(HID-AOS)。在少数合金中,单个激光脉冲只要有足够的影响力就能切换自旋,但大多数磁性材料需要多个脉冲。材料特性和激光特性对自旋切换过程都有很大影响。然而,其基本机制仍在争论之中。随着整个研究领域向应用领域迈进,回顾过去十年所取得的成就是非常合适的。本综述涵盖了过去十年中的一些主要实验和理论发展,可作为该领域新手的入门读物和资深研究人员的总结。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Physics: Condensed Matter
Journal of Physics: Condensed Matter 物理-物理:凝聚态物理
CiteScore
5.30
自引率
7.40%
发文量
1288
审稿时长
2.1 months
期刊介绍: Journal of Physics: Condensed Matter covers the whole of condensed matter physics including soft condensed matter and nanostructures. Papers may report experimental, theoretical and simulation studies. Note that papers must contain fundamental condensed matter science: papers reporting methods of materials preparation or properties of materials without novel condensed matter content will not be accepted.
期刊最新文献
Transport of a comb-like polymer across a nanochannel subject to a pulling force. Editorial for two-dimensional materials-based heterostructures for next-generation nanodevices. High-temperature transport properties of a two-dimensional weakly doped parabolic semiconductor. Superconducting density of states and vortex lattice of LaRu2P2observed by Scanning Tunneling Spectroscopy. Coincidence detection probability of(γ,2e)photoemission measurement.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1