{"title":"Artificial intelligence in radiotherapy: Current applications and future trends.","authors":"Paul Giraud, Jean-Emmanuel Bibault","doi":"10.1016/j.diii.2024.06.001","DOIUrl":null,"url":null,"abstract":"<p><p>Radiation therapy has dramatically changed with the advent of computed tomography and intensity modulation. This added complexity to the workflow but allowed for more precise and reproducible treatment. As a result, these advances required the accurate delineation of many more volumes, raising questions about how to delineate them, in a uniform manner across centers. Then, as computing power improved, reverse planning became possible and three-dimensional dose distributions could be generated. Artificial intelligence offers the opportunity to make such workflow more efficient while increasing practice homogeneity. Many artificial intelligence-based tools are being implemented in routine practice to increase efficiency, reduce workload and improve homogeneity of treatments. Data retrieved from this workflow could be combined with clinical data and omic data to develop predictive tools to support clinical decision-making process. Such predictive tools are at the stage of proof-of-concept and need to be explainatory, prospectively validated, and based on large and multicenter cohorts. Nevertheless, they could bridge the gap to personalized radiation oncology, by personalizing oncologic strategies, dose prescriptions to tumor volumes and dose constraints to organs at risk.</p>","PeriodicalId":48656,"journal":{"name":"Diagnostic and Interventional Imaging","volume":null,"pages":null},"PeriodicalIF":4.9000,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diagnostic and Interventional Imaging","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.diii.2024.06.001","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
Radiation therapy has dramatically changed with the advent of computed tomography and intensity modulation. This added complexity to the workflow but allowed for more precise and reproducible treatment. As a result, these advances required the accurate delineation of many more volumes, raising questions about how to delineate them, in a uniform manner across centers. Then, as computing power improved, reverse planning became possible and three-dimensional dose distributions could be generated. Artificial intelligence offers the opportunity to make such workflow more efficient while increasing practice homogeneity. Many artificial intelligence-based tools are being implemented in routine practice to increase efficiency, reduce workload and improve homogeneity of treatments. Data retrieved from this workflow could be combined with clinical data and omic data to develop predictive tools to support clinical decision-making process. Such predictive tools are at the stage of proof-of-concept and need to be explainatory, prospectively validated, and based on large and multicenter cohorts. Nevertheless, they could bridge the gap to personalized radiation oncology, by personalizing oncologic strategies, dose prescriptions to tumor volumes and dose constraints to organs at risk.
期刊介绍:
Diagnostic and Interventional Imaging accepts publications originating from any part of the world based only on their scientific merit. The Journal focuses on illustrated articles with great iconographic topics and aims at aiding sharpening clinical decision-making skills as well as following high research topics. All articles are published in English.
Diagnostic and Interventional Imaging publishes editorials, technical notes, letters, original and review articles on abdominal, breast, cancer, cardiac, emergency, forensic medicine, head and neck, musculoskeletal, gastrointestinal, genitourinary, interventional, obstetric, pediatric, thoracic and vascular imaging, neuroradiology, nuclear medicine, as well as contrast material, computer developments, health policies and practice, and medical physics relevant to imaging.