Laetitia Saccenti, Bilel Ben Jedida, Lise Minssen, Refaat Nouri, Lina El Bejjani, Haifa Remili, An Voquang, Vania Tacher, Hicham Kobeiter, Alain Luciani, Jean Francois Deux, Thu Ha Dao
{"title":"Evaluation of a deep learning-based software to automatically detect and quantify breast arterial calcifications on digital mammogram.","authors":"Laetitia Saccenti, Bilel Ben Jedida, Lise Minssen, Refaat Nouri, Lina El Bejjani, Haifa Remili, An Voquang, Vania Tacher, Hicham Kobeiter, Alain Luciani, Jean Francois Deux, Thu Ha Dao","doi":"10.1016/j.diii.2024.10.001","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>The purpose of this study was to evaluate an artificial intelligence (AI) software that automatically detects and quantifies breast arterial calcifications (BAC).</p><p><strong>Materials and methods: </strong>Women who underwent both mammography and thoracic computed tomography (CT) from 2009 to 2018 were retrospectively included in this single-center study. Deep learning-based software was used to automatically detect and quantify BAC with a BAC AI score ranging from 0 to 10-points. Results were compared using Spearman correlation test with a previously described BAC manual score based on radiologists' visual quantification of BAC on the mammogram. Coronary artery calcification (CAC) score was manually scored using a 12-point scale on CT. The diagnostic performance of the marked BAC AI score (defined as BAC AI score ≥ 5) for the detection of marked CAC (CAC score ≥ 4) was analyzed in terms of sensitivity, specificity, accuracy and area under the receiver operating characteristic curve (AUC).</p><p><strong>Results: </strong>A total of 502 women with a median age of 62 years (age range: 42-96 years) were included. The BAC AI score showed a very strong correlation with the BAC manual score (r = 0.83). Marked BAC AI score had 32.7 % sensitivity (37/113; 95 % confidence interval [CI]: 24.2-42.2), 96.1 % specificity (374/389; 95 % CI: 93.7-97.8), 71.2 % positive predictive value (37/52; 95 % CI: 56.9-82.9), 83.1 % negative predictive value (374/450; 95 % CI: 79.3-86.5), and 81.9 % accuracy (411/502; 95 % CI: 78.2-85.1) for the diagnosis of marked CAC. The AUC of the marked BAC AI score for the diagnosis of marked CAC was 0.64 (95 % CI: 0.60-0.69).</p><p><strong>Conclusion: </strong>The automated BAC AI score shows a very strong correlation with manual BAC scoring in this external validation cohort. The automated BAC AI score may be a useful tool to promote the integration of BAC into mammography reports and to improve awareness of a woman's cardiovascular risk status.</p>","PeriodicalId":48656,"journal":{"name":"Diagnostic and Interventional Imaging","volume":null,"pages":null},"PeriodicalIF":4.9000,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diagnostic and Interventional Imaging","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.diii.2024.10.001","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: The purpose of this study was to evaluate an artificial intelligence (AI) software that automatically detects and quantifies breast arterial calcifications (BAC).
Materials and methods: Women who underwent both mammography and thoracic computed tomography (CT) from 2009 to 2018 were retrospectively included in this single-center study. Deep learning-based software was used to automatically detect and quantify BAC with a BAC AI score ranging from 0 to 10-points. Results were compared using Spearman correlation test with a previously described BAC manual score based on radiologists' visual quantification of BAC on the mammogram. Coronary artery calcification (CAC) score was manually scored using a 12-point scale on CT. The diagnostic performance of the marked BAC AI score (defined as BAC AI score ≥ 5) for the detection of marked CAC (CAC score ≥ 4) was analyzed in terms of sensitivity, specificity, accuracy and area under the receiver operating characteristic curve (AUC).
Results: A total of 502 women with a median age of 62 years (age range: 42-96 years) were included. The BAC AI score showed a very strong correlation with the BAC manual score (r = 0.83). Marked BAC AI score had 32.7 % sensitivity (37/113; 95 % confidence interval [CI]: 24.2-42.2), 96.1 % specificity (374/389; 95 % CI: 93.7-97.8), 71.2 % positive predictive value (37/52; 95 % CI: 56.9-82.9), 83.1 % negative predictive value (374/450; 95 % CI: 79.3-86.5), and 81.9 % accuracy (411/502; 95 % CI: 78.2-85.1) for the diagnosis of marked CAC. The AUC of the marked BAC AI score for the diagnosis of marked CAC was 0.64 (95 % CI: 0.60-0.69).
Conclusion: The automated BAC AI score shows a very strong correlation with manual BAC scoring in this external validation cohort. The automated BAC AI score may be a useful tool to promote the integration of BAC into mammography reports and to improve awareness of a woman's cardiovascular risk status.
期刊介绍:
Diagnostic and Interventional Imaging accepts publications originating from any part of the world based only on their scientific merit. The Journal focuses on illustrated articles with great iconographic topics and aims at aiding sharpening clinical decision-making skills as well as following high research topics. All articles are published in English.
Diagnostic and Interventional Imaging publishes editorials, technical notes, letters, original and review articles on abdominal, breast, cancer, cardiac, emergency, forensic medicine, head and neck, musculoskeletal, gastrointestinal, genitourinary, interventional, obstetric, pediatric, thoracic and vascular imaging, neuroradiology, nuclear medicine, as well as contrast material, computer developments, health policies and practice, and medical physics relevant to imaging.