Jason Deng , Svetlana Belyanskaya, Ninad Prabhu , Christopher Arico-Muendel, Hongfeng Deng , Christopher B. Phelps , David I. Israel , Hongfang Yang , Joseph Boyer , G. Joseph Franklin , Jeremy L. Yap , Kenneth E. Lind , Ching-Hsuan Tsai , Christine Donahue , Jennifer D. Summerfield
{"title":"Profiling cells with DELs: Small molecule fingerprinting of cell surfaces","authors":"Jason Deng , Svetlana Belyanskaya, Ninad Prabhu , Christopher Arico-Muendel, Hongfeng Deng , Christopher B. Phelps , David I. Israel , Hongfang Yang , Joseph Boyer , G. Joseph Franklin , Jeremy L. Yap , Kenneth E. Lind , Ching-Hsuan Tsai , Christine Donahue , Jennifer D. Summerfield","doi":"10.1016/j.slasd.2024.100171","DOIUrl":null,"url":null,"abstract":"<div><p>DNA-encoded small molecule library technology has recently emerged as a new paradigm for identifying ligands against drug targets. To date, it has been used to identify ligands against targets that are soluble or overexpressed on cell surfaces. Here, we report applying cell-based selection methods to profile surfaces of mouse C2C12 myoblasts and myotube cells in an unbiased, target agnostic manner. A panel of on-DNA compounds were identified and confirmed for cell binding selectivity. We optimized the cell selection protocol and employed a novel data analysis method to identify cell selective ligands against a panel of human B and T lymphocytes. We discuss the generality of using this workflow for DNA encoded small molecule library selection and data analysis against different cell types, and the feasibility of applying this method to profile cell surfaces for biomarker and target identification.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2472555224000339/pdfft?md5=c0f34f61b83c77e23483474ae6a68680&pid=1-s2.0-S2472555224000339-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2472555224000339","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
DNA-encoded small molecule library technology has recently emerged as a new paradigm for identifying ligands against drug targets. To date, it has been used to identify ligands against targets that are soluble or overexpressed on cell surfaces. Here, we report applying cell-based selection methods to profile surfaces of mouse C2C12 myoblasts and myotube cells in an unbiased, target agnostic manner. A panel of on-DNA compounds were identified and confirmed for cell binding selectivity. We optimized the cell selection protocol and employed a novel data analysis method to identify cell selective ligands against a panel of human B and T lymphocytes. We discuss the generality of using this workflow for DNA encoded small molecule library selection and data analysis against different cell types, and the feasibility of applying this method to profile cell surfaces for biomarker and target identification.
DNA 编码小分子文库技术最近已成为鉴定药物靶标配体的一种新模式。迄今为止,该技术一直被用于鉴定针对可溶性或在细胞表面过度表达的靶点的配体。在此,我们报告了应用基于细胞的筛选方法,以无偏见、不考虑靶点的方式对小鼠 C2C12 肌母细胞和肌管细胞的表面进行剖析。我们鉴定并确认了一组 DNA 上化合物的细胞结合选择性。我们优化了细胞选择方案,并采用了一种新颖的数据分析方法来鉴定针对人类 B 淋巴细胞和 T 淋巴细胞的细胞选择性配体。我们讨论了使用这种工作流程对不同类型细胞进行 DNA 编码小分子库选择和数据分析的通用性,以及应用这种方法对细胞表面进行生物标记物和靶标鉴定的可行性。