A novel high-throughput screening platform to identify inhibitors of DNAJB1-PRKACA-driven transcriptional activity in fibrolamellar carcinoma

IF 2.7 4区 生物学 Q2 BIOCHEMICAL RESEARCH METHODS SLAS Discovery Pub Date : 2025-02-11 DOI:10.1016/j.slasd.2025.100221
Nihal Bharath , Emma DiPietro , Olivia Durfee , Ina Kycia , Jennifer Splaine , Praveen Sethupathy , Michael S. Rogers , Khashayar Vakili
{"title":"A novel high-throughput screening platform to identify inhibitors of DNAJB1-PRKACA-driven transcriptional activity in fibrolamellar carcinoma","authors":"Nihal Bharath ,&nbsp;Emma DiPietro ,&nbsp;Olivia Durfee ,&nbsp;Ina Kycia ,&nbsp;Jennifer Splaine ,&nbsp;Praveen Sethupathy ,&nbsp;Michael S. Rogers ,&nbsp;Khashayar Vakili","doi":"10.1016/j.slasd.2025.100221","DOIUrl":null,"url":null,"abstract":"<div><div>Fibrolamellar carcinoma (FLC) is a primary liver cancer with a poor prognosis, primarily due to the lack of effective chemotherapeutic options. The <em>DNAJB1-PRKACA</em> (DP) gene fusion is recognized as the key oncogenic driver in FLC. This fusion arises from a ∼400 kb heterozygous deletion on chromosome 19, which fuses exon 1 of <em>DNAJB1</em> with exons 2–10 of <em>PRKACA</em>, the gene encoding the catalytic subunit of protein kinase A (PKA). While targeting DP is considered a promising therapeutic approach, attempts to inhibit the kinase function of the DP fusion protein have been largely unsuccessful due to off-target effects on wild-type PKA.</div><div>In response to this challenge, we developed a high-throughput screening (HTS) assay to identify inhibitors of DP's downstream signaling pathways involved in transcriptional regulation. Our previous research identified <em>LINC00473</em> as a transcriptional marker for DP protein expression, and <em>LINC00473</em> is known to be upregulated in FLC tumors. Additionally, evidence suggests that <em>LINC00473</em> promotes FLC tumor growth.</div><div>Based on the relationship between DP and <em>LINC00473</em> expression, we engineered the HEK-DP-Luc reporter cell line by modifying HEK293 cells to express DP at the endogenous locus and to express the NanoLuc luciferase gene under the control of the <em>LINC00473</em> promoter and enhancer. We have optimized the HEK-DP-Luc cells for HTS, and here we present our pipeline for primary screening and counter-screening to identify compounds that inhibit DP's downstream transcriptional activity. This HTS platform provides a novel approach for therapeutic drug discovery in FLC.</div></div>","PeriodicalId":21764,"journal":{"name":"SLAS Discovery","volume":"32 ","pages":"Article 100221"},"PeriodicalIF":2.7000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SLAS Discovery","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2472555225000140","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Fibrolamellar carcinoma (FLC) is a primary liver cancer with a poor prognosis, primarily due to the lack of effective chemotherapeutic options. The DNAJB1-PRKACA (DP) gene fusion is recognized as the key oncogenic driver in FLC. This fusion arises from a ∼400 kb heterozygous deletion on chromosome 19, which fuses exon 1 of DNAJB1 with exons 2–10 of PRKACA, the gene encoding the catalytic subunit of protein kinase A (PKA). While targeting DP is considered a promising therapeutic approach, attempts to inhibit the kinase function of the DP fusion protein have been largely unsuccessful due to off-target effects on wild-type PKA.
In response to this challenge, we developed a high-throughput screening (HTS) assay to identify inhibitors of DP's downstream signaling pathways involved in transcriptional regulation. Our previous research identified LINC00473 as a transcriptional marker for DP protein expression, and LINC00473 is known to be upregulated in FLC tumors. Additionally, evidence suggests that LINC00473 promotes FLC tumor growth.
Based on the relationship between DP and LINC00473 expression, we engineered the HEK-DP-Luc reporter cell line by modifying HEK293 cells to express DP at the endogenous locus and to express the NanoLuc luciferase gene under the control of the LINC00473 promoter and enhancer. We have optimized the HEK-DP-Luc cells for HTS, and here we present our pipeline for primary screening and counter-screening to identify compounds that inhibit DP's downstream transcriptional activity. This HTS platform provides a novel approach for therapeutic drug discovery in FLC.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
纤维母细胞癌(FLC)是一种预后不良的原发性肝癌,主要原因是缺乏有效的化疗方案。DNAJB1-PRKACA(DP)基因融合被认为是FLC的关键致癌驱动因子。这种融合源于 19 号染色体上的∼400 kb 杂合缺失,它将 DNAJB1 的第 1 号外显子与 PRKACA(编码蛋白激酶 A(PKA)催化亚基的基因)的第 2-10 号外显子融合在一起。虽然以 DP 为靶点被认为是一种很有前景的治疗方法,但由于对野生型 PKA 的脱靶效应,抑制 DP 融合蛋白激酶功能的尝试在很大程度上并不成功。为了应对这一挑战,我们开发了一种高通量筛选(HTS)检测方法,以确定参与转录调控的 DP 下游信号通路的抑制剂。我们之前的研究发现 LINC00473 是 DP 蛋白表达的转录标记,而 LINC00473 在 FLC 肿瘤中上调是众所周知的。此外,有证据表明 LINC00473 会促进 FLC 肿瘤的生长。基于 DP 和 LINC00473 表达之间的关系,我们改造了 HEK293 细胞,使其在内源性位点表达 DP,并在 LINC00473 启动子和增强子的控制下表达 NanoLuc 荧光素酶基因,从而设计出 HEK-DP-Luc 报告细胞系。我们对 HEK-DP-Luc 细胞进行了 HTS 优化,并在此介绍我们的初筛和反筛选管道,以确定抑制 DP 下游转录活性的化合物。这一 HTS 平台为发现 FLC 治疗药物提供了一种新方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
SLAS Discovery
SLAS Discovery Chemistry-Analytical Chemistry
CiteScore
7.00
自引率
3.20%
发文量
58
审稿时长
39 days
期刊介绍: Advancing Life Sciences R&D: SLAS Discovery reports how scientists develop and utilize novel technologies and/or approaches to provide and characterize chemical and biological tools to understand and treat human disease. SLAS Discovery is a peer-reviewed journal that publishes scientific reports that enable and improve target validation, evaluate current drug discovery technologies, provide novel research tools, and incorporate research approaches that enhance depth of knowledge and drug discovery success. SLAS Discovery emphasizes scientific and technical advances in target identification/validation (including chemical probes, RNA silencing, gene editing technologies); biomarker discovery; assay development; virtual, medium- or high-throughput screening (biochemical and biological, biophysical, phenotypic, toxicological, ADME); lead generation/optimization; chemical biology; and informatics (data analysis, image analysis, statistics, bio- and chemo-informatics). Review articles on target biology, new paradigms in drug discovery and advances in drug discovery technologies. SLAS Discovery is of particular interest to those involved in analytical chemistry, applied microbiology, automation, biochemistry, bioengineering, biomedical optics, biotechnology, bioinformatics, cell biology, DNA science and technology, genetics, information technology, medicinal chemistry, molecular biology, natural products chemistry, organic chemistry, pharmacology, spectroscopy, and toxicology. SLAS Discovery is a member of the Committee on Publication Ethics (COPE) and was published previously (1996-2016) as the Journal of Biomolecular Screening (JBS).
期刊最新文献
A secretome screen in primary human lung fibroblasts identifies FGF9 as a novel regulator of cellular senescence Corelet™ platform: Precision high throughput screening for targeted drug discovery of biomolecular condensates Combinatorial screen of targeted agents with the PI3K inhibitors inavolisib, alpelisib, duvelisib, and copanlisib in multi-cell type tumor spheroids A novel high-throughput screening platform to identify inhibitors of DNAJB1-PRKACA-driven transcriptional activity in fibrolamellar carcinoma Comparative evaluation of cell-based assay technologies for scoring drug-induced condensation of SARS-CoV-2 nucleocapsid protein
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1