Precise Fermi level engineering in a topological Weyl semimetal via fast ion implantation

IF 11.9 1区 物理与天体物理 Q1 PHYSICS, APPLIED Applied physics reviews Pub Date : 2024-06-25 DOI:10.1063/5.0181361
Manasi Mandal, Abhijatmedhi Chotrattanapituk, Kevin Woller, Lijun Wu, Haowei Xu, Nguyen Tuan Hung, Nannan Mao, Ryotaro Okabe, Artittaya Boonkird, Thanh Nguyen, Nathan C. Drucker, Xiaoqian M. Chen, Takashi Momiki, Ju Li, Jing Kong, Yimei Zhu, Mingda Li
{"title":"Precise Fermi level engineering in a topological Weyl semimetal via fast ion implantation","authors":"Manasi Mandal, Abhijatmedhi Chotrattanapituk, Kevin Woller, Lijun Wu, Haowei Xu, Nguyen Tuan Hung, Nannan Mao, Ryotaro Okabe, Artittaya Boonkird, Thanh Nguyen, Nathan C. Drucker, Xiaoqian M. Chen, Takashi Momiki, Ju Li, Jing Kong, Yimei Zhu, Mingda Li","doi":"10.1063/5.0181361","DOIUrl":null,"url":null,"abstract":"The precise controllability of the Fermi level is a critical aspect of quantum materials. For topological Weyl semimetals, there is a pressing need to fine-tune the Fermi level to the Weyl nodes and unlock exotic electronic and optoelectronic effects associated with the divergent Berry curvature. However, in contrast to two-dimensional materials, where the Fermi level can be controlled through various techniques, the situation for bulk crystals beyond laborious chemical doping poses significant challenges. Here, we report the milli-electron-volt (meV) level ultra-fine-tuning of the Fermi level of bulk topological Weyl semimetal tantalum phosphide using accelerator-based high-energy hydrogen implantation and theory-driven planning. By calculating the desired carrier density and controlling the accelerator profiles, the Fermi level can be experimentally fine-tuned from 5 meV below, to 3.8 meV below, to 3.2 meV above the Weyl nodes. High-resolution transmission electron microscopy reveals the crystalline structure is largely maintained under irradiation, while electrical transport indicates that Weyl nodes are preserved and carrier mobility is also largely retained. Our work demonstrates the viability of this generic approach to tune the Fermi level in semimetal systems and could serve to achieve property fine-tuning for other bulk quantum materials with ultrahigh precision.","PeriodicalId":8200,"journal":{"name":"Applied physics reviews","volume":"27 1","pages":""},"PeriodicalIF":11.9000,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied physics reviews","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/5.0181361","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

The precise controllability of the Fermi level is a critical aspect of quantum materials. For topological Weyl semimetals, there is a pressing need to fine-tune the Fermi level to the Weyl nodes and unlock exotic electronic and optoelectronic effects associated with the divergent Berry curvature. However, in contrast to two-dimensional materials, where the Fermi level can be controlled through various techniques, the situation for bulk crystals beyond laborious chemical doping poses significant challenges. Here, we report the milli-electron-volt (meV) level ultra-fine-tuning of the Fermi level of bulk topological Weyl semimetal tantalum phosphide using accelerator-based high-energy hydrogen implantation and theory-driven planning. By calculating the desired carrier density and controlling the accelerator profiles, the Fermi level can be experimentally fine-tuned from 5 meV below, to 3.8 meV below, to 3.2 meV above the Weyl nodes. High-resolution transmission electron microscopy reveals the crystalline structure is largely maintained under irradiation, while electrical transport indicates that Weyl nodes are preserved and carrier mobility is also largely retained. Our work demonstrates the viability of this generic approach to tune the Fermi level in semimetal systems and could serve to achieve property fine-tuning for other bulk quantum materials with ultrahigh precision.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过快速离子注入实现拓扑韦尔半金属中的精确费米级工程
费米级的精确可控性是量子材料的一个关键方面。对于拓扑韦尔半金属而言,亟需将费米级微调至韦尔节点,并释放与发散贝里曲率相关的奇异电子和光电效应。然而,与可以通过各种技术控制费米水平的二维材料相比,除了费力的化学掺杂之外,块状晶体的情况带来了巨大的挑战。在这里,我们报告了利用基于加速器的高能氢植入和理论驱动的规划,对块状拓扑韦尔半金属磷化钽的费米级进行毫电子伏特(meV)级超微调的情况。通过计算所需载流子密度和控制加速器剖面,费米水平可在韦尔节点以下 5 meV、3.8 meV 至 3.2 meV 之间进行实验微调。高分辨率透射电子显微镜显示,晶体结构在辐照下基本保持不变,而电子传输显示,Weyl 节点得以保留,载流子迁移率也基本保持不变。我们的研究工作证明了这种调整半金属系统费米级的通用方法的可行性,并可用于以超高精度实现其他块体量子材料的性质微调。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Applied physics reviews
Applied physics reviews PHYSICS, APPLIED-
CiteScore
22.50
自引率
2.00%
发文量
113
审稿时长
2 months
期刊介绍: Applied Physics Reviews (APR) is a journal featuring articles on critical topics in experimental or theoretical research in applied physics and applications of physics to other scientific and engineering branches. The publication includes two main types of articles: Original Research: These articles report on high-quality, novel research studies that are of significant interest to the applied physics community. Reviews: Review articles in APR can either be authoritative and comprehensive assessments of established areas of applied physics or short, timely reviews of recent advances in established fields or emerging areas of applied physics.
期刊最新文献
MXene-TiO2 heterostructured iontronic neural devices based on ion-dynamic capacitance enabling optoelectronic modulation Recent advances in multimodal skin-like wearable sensors Thermal transport property of boron nitride nanosheets Flexible magnetoelectric systems: Types, principles, materials, preparation and application Advances in volatile organic compounds detection: From fundamental research to real-world applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1