Feng Jiang, Harald Saathoff, Junwei Song, Hengheng Zhang, Linyu Gao, Thomas Leisner
{"title":"Brown carbon aerosol in rural Germany: sources, chemistry, and diurnal variations","authors":"Feng Jiang, Harald Saathoff, Junwei Song, Hengheng Zhang, Linyu Gao, Thomas Leisner","doi":"10.5194/egusphere-2024-1848","DOIUrl":null,"url":null,"abstract":"<strong>Abstract.</strong> Brown carbon aerosol (BrC) is one major contributor to atmospheric air pollution in Europe, especially in winter. Therefore, we studied the chemical composition, diurnal variation, and sources of BrC from 17<sup>th</sup> February to 16<sup>th</sup> March at a rural location in southwest Germany. In total, 178 potential BrC molecules (including 7 nitro aromatic compounds, NACs) were identified in the particle phase comprising on average 63 ± 32 ng m<sup>−3</sup>, and 31 potential BrC (including 4 NACs) molecules were identified in the gas phase contributing on average 6.2 ± 5.0 ng m<sup>−3</sup> during the whole campaign. The 178 potential BrC molecules only accounted for 2.3 ± 1.5 % of the total organic mass, but can explain 11 ± 11 % of the total BrC absorption at 370 nm, assuming an average mass absorption coefficient at 370 nm (MAC<sub>370</sub>) of 9.5 m<sup>2</sup> g<sup>−1</sup>. A few BrC molecules dominated the total BrC absorption. In addition, diurnal variations show that gas phase BrC was higher at daytime and lower at night. It was mainly controlled by secondary formation (e.g. photooxidation) and particle-to-gas partitioning. Correspondingly, the particle phase BrC was lower at daytime and higher at nighttime. Secondary formation dominates the particle-phase BrC with 61 ± 21 %, while 39 ± 21 % originated from biomass burning. Furthermore, the particle-phase BrC showed decreasing light absorption due to photochemical aging. This study extends the current understanding of real-time behaviors of brown carbon aerosol in the gas and particle phase at a location characteristic for the central Europe.","PeriodicalId":8611,"journal":{"name":"Atmospheric Chemistry and Physics","volume":"17 1","pages":""},"PeriodicalIF":5.2000,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atmospheric Chemistry and Physics","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.5194/egusphere-2024-1848","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract. Brown carbon aerosol (BrC) is one major contributor to atmospheric air pollution in Europe, especially in winter. Therefore, we studied the chemical composition, diurnal variation, and sources of BrC from 17th February to 16th March at a rural location in southwest Germany. In total, 178 potential BrC molecules (including 7 nitro aromatic compounds, NACs) were identified in the particle phase comprising on average 63 ± 32 ng m−3, and 31 potential BrC (including 4 NACs) molecules were identified in the gas phase contributing on average 6.2 ± 5.0 ng m−3 during the whole campaign. The 178 potential BrC molecules only accounted for 2.3 ± 1.5 % of the total organic mass, but can explain 11 ± 11 % of the total BrC absorption at 370 nm, assuming an average mass absorption coefficient at 370 nm (MAC370) of 9.5 m2 g−1. A few BrC molecules dominated the total BrC absorption. In addition, diurnal variations show that gas phase BrC was higher at daytime and lower at night. It was mainly controlled by secondary formation (e.g. photooxidation) and particle-to-gas partitioning. Correspondingly, the particle phase BrC was lower at daytime and higher at nighttime. Secondary formation dominates the particle-phase BrC with 61 ± 21 %, while 39 ± 21 % originated from biomass burning. Furthermore, the particle-phase BrC showed decreasing light absorption due to photochemical aging. This study extends the current understanding of real-time behaviors of brown carbon aerosol in the gas and particle phase at a location characteristic for the central Europe.
期刊介绍:
Atmospheric Chemistry and Physics (ACP) is a not-for-profit international scientific journal dedicated to the publication and public discussion of high-quality studies investigating the Earth''s atmosphere and the underlying chemical and physical processes. It covers the altitude range from the land and ocean surface up to the turbopause, including the troposphere, stratosphere, and mesosphere.
The main subject areas comprise atmospheric modelling, field measurements, remote sensing, and laboratory studies of gases, aerosols, clouds and precipitation, isotopes, radiation, dynamics, biosphere interactions, and hydrosphere interactions. The journal scope is focused on studies with general implications for atmospheric science rather than investigations that are primarily of local or technical interest.