Habitat quality or quantity? Niche marginality across 21 plants and animals suggests differential responses between highland and lowland species to past climatic changes
{"title":"Habitat quality or quantity? Niche marginality across 21 plants and animals suggests differential responses between highland and lowland species to past climatic changes","authors":"Raúl Araya-Donoso, Austin Biddy, Adrián Munguía-Vega, Andrés Lira-Noriega, Greer A. Dolby","doi":"10.1111/ecog.07391","DOIUrl":null,"url":null,"abstract":"<p>Climatic changes can affect species distributions, population abundance, and evolution. Such organismal responses could be determined by the amount and quality of available habitats, which can vary independently. In this study, we assessed changes in habitat quantity and quality independently to generate explicit predictions of the species' responses to climatic changes between Last Glacial Maximum (LGM) and present day. We built ecological niche models for genetic groups within 21 reptile, mammal, and plant taxa from the Baja California peninsula inhabiting lowland or highland environments. Significant niche divergence was detected for all clades within species, along with significant differences in the niche breadth and area of distribution between northern and southern clades. We quantified habitat quantity from the distribution models, and most clades showed a reduction in distribution area towards LGM. Further, niche marginality (used as a measure of habitat quality) was higher during LGM for most clades, except for northern highland species. Our results suggest that changes in habitat quantity and quality can affect organismal responses independently. This allows the prediction of genomic signatures associated with changes in effective population size and selection pressure that could be explicitly tested from our models.</p>","PeriodicalId":51026,"journal":{"name":"Ecography","volume":"2024 9","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/ecog.07391","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecography","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/ecog.07391","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIODIVERSITY CONSERVATION","Score":null,"Total":0}
引用次数: 0
Abstract
Climatic changes can affect species distributions, population abundance, and evolution. Such organismal responses could be determined by the amount and quality of available habitats, which can vary independently. In this study, we assessed changes in habitat quantity and quality independently to generate explicit predictions of the species' responses to climatic changes between Last Glacial Maximum (LGM) and present day. We built ecological niche models for genetic groups within 21 reptile, mammal, and plant taxa from the Baja California peninsula inhabiting lowland or highland environments. Significant niche divergence was detected for all clades within species, along with significant differences in the niche breadth and area of distribution between northern and southern clades. We quantified habitat quantity from the distribution models, and most clades showed a reduction in distribution area towards LGM. Further, niche marginality (used as a measure of habitat quality) was higher during LGM for most clades, except for northern highland species. Our results suggest that changes in habitat quantity and quality can affect organismal responses independently. This allows the prediction of genomic signatures associated with changes in effective population size and selection pressure that could be explicitly tested from our models.
期刊介绍:
ECOGRAPHY publishes exciting, novel, and important articles that significantly advance understanding of ecological or biodiversity patterns in space or time. Papers focusing on conservation or restoration are welcomed, provided they are anchored in ecological theory and convey a general message that goes beyond a single case study. We encourage papers that seek advancing the field through the development and testing of theory or methodology, or by proposing new tools for analysis or interpretation of ecological phenomena. Manuscripts are expected to address general principles in ecology, though they may do so using a specific model system if they adequately frame the problem relative to a generalized ecological question or problem.
Purely descriptive papers are considered only if breaking new ground and/or describing patterns seldom explored. Studies focused on a single species or single location are generally discouraged unless they make a significant contribution to advancing general theory or understanding of biodiversity patterns and processes. Manuscripts merely confirming or marginally extending results of previous work are unlikely to be considered in Ecography.
Papers are judged by virtue of their originality, appeal to general interest, and their contribution to new developments in studies of spatial and temporal ecological patterns. There are no biases with regard to taxon, biome, or biogeographical area.