Alejandro López-de Sancha, Lluís Benejam, Dani Boix, Lars Briggs, Maria Cuenca-Cambronero, Thomas A. Davidson, Luc De Meester, Julie C. Fahy, Pieter Lemmens, Beatriz Martin, Thomas Mehner, Beat Oertli, Marzenna Rasmussen, Helen M. Greaves, Carl Sayer, Meryem Beklioğlu, Rein Brys, Sandra Brucet
Amphibians are commonly occurring inhabitants of most lentic freshwater ecosystems, yet their global populations are in alarming decline. Ponds in particular play a crucial role in supporting amphibian biodiversity. In this study, we identified the main drivers influencing amphibian species richness by conducting a comprehensive ecological characterization in 201 ponds across seven European countries spanning a large latitudinal and longitudinal gradient. The amphibian species richness in each of these ponds was assessed using environmental DNA metabarcoding on water samples. The relative influence of climatic, local abiotic and biotic, and land use variables on variation in species richness across ponds was quantified using boosted regression trees. Our results suggest that local factors, particularly chlorophyll-a concentration, but also pond area and depth, are the main drivers of amphibian richness, together with climatic variables such as annual mean precipitation and temperature. The highest richness was observed in low-nutrient, fishless, intermediate-sized, shallow ponds, located in warmer regions with higher precipitation rates. These potential drivers of amphibian richness should be considered in the planning and implementation of amphibian conservation and management actions.
{"title":"Drivers of amphibian species richness in European ponds","authors":"Alejandro López-de Sancha, Lluís Benejam, Dani Boix, Lars Briggs, Maria Cuenca-Cambronero, Thomas A. Davidson, Luc De Meester, Julie C. Fahy, Pieter Lemmens, Beatriz Martin, Thomas Mehner, Beat Oertli, Marzenna Rasmussen, Helen M. Greaves, Carl Sayer, Meryem Beklioğlu, Rein Brys, Sandra Brucet","doi":"10.1111/ecog.07347","DOIUrl":"https://doi.org/10.1111/ecog.07347","url":null,"abstract":"Amphibians are commonly occurring inhabitants of most lentic freshwater ecosystems, yet their global populations are in alarming decline. Ponds in particular play a crucial role in supporting amphibian biodiversity. In this study, we identified the main drivers influencing amphibian species richness by conducting a comprehensive ecological characterization in 201 ponds across seven European countries spanning a large latitudinal and longitudinal gradient. The amphibian species richness in each of these ponds was assessed using environmental DNA metabarcoding on water samples. The relative influence of climatic, local abiotic and biotic, and land use variables on variation in species richness across ponds was quantified using boosted regression trees. Our results suggest that local factors, particularly chlorophyll-a concentration, but also pond area and depth, are the main drivers of amphibian richness, together with climatic variables such as annual mean precipitation and temperature. The highest richness was observed in low-nutrient, fishless, intermediate-sized, shallow ponds, located in warmer regions with higher precipitation rates. These potential drivers of amphibian richness should be considered in the planning and implementation of amphibian conservation and management actions.","PeriodicalId":51026,"journal":{"name":"Ecography","volume":"11 1","pages":""},"PeriodicalIF":5.9,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143026408","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Borja Rodríguez-Lozano, Emilio Rodríguez-Caballero, and Yolanda Cantón
Water scarcity poses a significant life constraint in global drylands that determines species adaptations and mosaic of exposed bare areas and vegetation patches. Runoff-water redistribution resulting from this spatial configuration has been suggested as a key process controlling water availability for vegetation and ecosystem functioning. However, the potential of this process to ameliorate the negative impacts of aridification in drylands remains unclear, and there is no empirical evidence of its relevance on natural ecosystems under different levels of aridity and disturbance regimes. To address this gap, we analysed temporal series of the normalized vegetation index (NDVI, a proxy of vegetation functioning) along a regional aridity–disturbance gradient under current and future climatic conditions. We found that mean NDVI increases in areas of runoff water accumulation (calculated using a water redistribution index) until a certain threshold, above which vegetation patches are not able to retain extra runoff water. Once thresholds were identified, we analysed the role of water redistribution on vegetation dynamics by analysing temporal series of monthly NDVI in a space–for–time substitution approach. The obtained results provided further evidence of the runoff water redistribution on vegetation, triggering a positive feedback between water accumulation and vegetation growth. Results obtained by the combination of the obtained model with climatic data from the 6th IPCC report suggest that this feedback could ameliorate the expected negative effects of aridification in drylands. However, this effect is partially counterbalanced in scenarios of high human disturbance and in areas where vegetation is not able to trap and retain the extra amount of resources given by runoff. Overall, our results provide empirical evidence of the relevance of runoff redistribution as a key process linking vegetation patterns to climate resistance in drylands that underscores its importance in the analysis and modelling of drylands' responses to aridification.
{"title":"Resource redistribution mediated by hydrological connectivity modulates vegetation response to aridification in drylands","authors":"Borja Rodríguez-Lozano, Emilio Rodríguez-Caballero, and Yolanda Cantón","doi":"10.1111/ecog.07650","DOIUrl":"https://doi.org/10.1111/ecog.07650","url":null,"abstract":"Water scarcity poses a significant life constraint in global drylands that determines species adaptations and mosaic of exposed bare areas and vegetation patches. Runoff-water redistribution resulting from this spatial configuration has been suggested as a key process controlling water availability for vegetation and ecosystem functioning. However, the potential of this process to ameliorate the negative impacts of aridification in drylands remains unclear, and there is no empirical evidence of its relevance on natural ecosystems under different levels of aridity and disturbance regimes. To address this gap, we analysed temporal series of the normalized vegetation index (NDVI, a proxy of vegetation functioning) along a regional aridity–disturbance gradient under current and future climatic conditions. We found that mean NDVI increases in areas of runoff water accumulation (calculated using a water redistribution index) until a certain threshold, above which vegetation patches are not able to retain extra runoff water. Once thresholds were identified, we analysed the role of water redistribution on vegetation dynamics by analysing temporal series of monthly NDVI in a space–for–time substitution approach. The obtained results provided further evidence of the runoff water redistribution on vegetation, triggering a positive feedback between water accumulation and vegetation growth. Results obtained by the combination of the obtained model with climatic data from the 6th IPCC report suggest that this feedback could ameliorate the expected negative effects of aridification in drylands. However, this effect is partially counterbalanced in scenarios of high human disturbance and in areas where vegetation is not able to trap and retain the extra amount of resources given by runoff. Overall, our results provide empirical evidence of the relevance of runoff redistribution as a key process linking vegetation patterns to climate resistance in drylands that underscores its importance in the analysis and modelling of drylands' responses to aridification.","PeriodicalId":51026,"journal":{"name":"Ecography","volume":"1 1","pages":""},"PeriodicalIF":5.9,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142991162","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
José P. Queirós, Philip R. Hollyman, Paco Bustamante, Diana Vaz, Mark Belchier, José C. Xavier
Food-webs are a major component of ecosystems and determinant for their functioning and structure. The food chain length (FCL) is a key feature of food-webs and it is crucial for the resistance of the community to external stressors. The Southern Ocean (SO) food-web is known for being short and dominated by an Antarctic krill Euphausia superba surplus, though recent studies proved the existence of different pathways. However, previous studies focused on the pelagic realm, with the deep-sea and benthopelagic coupling remaining poorly understood. Using stable isotopes of δ13C and δ15N in muscle from individuals collected during toothfish fishing seasons 2020, 2021 and 2022, we 1) studied the bathyal food-web structure at South Sandwich Islands; 2) evaluated the interannual variability of FCL; and 3) tested which FCL hypothesis better explains the variability at the SO deep-sea. Our results show that this food-web is composed of five trophic levels with both Patagonian Dissostichus eleginoides and Antarctic Dissostichus mawsoni toothfish as top predators. The 4th and 5th trophic levels are mostly composed of fish, while in the 3rd trophic level we mainly found cephalopods and crustaceans. The benthopelagic coupling occurs at different trophic levels, though mostly between the 3rd and 4th trophic level. The FCL varied between years, being in 2022 0.30 trophic levels shorter than in 2020. Our results suggest that food-webs including a benthic component are longer than pelagic and coastal SO food-webs. The FCL is positively related with net primary productivity, supporting that the productivity hypothesis explains the variability in FCL in SO bathyal food-webs in slope and seamount areas. With climate change, the productivity in the SO is expected to increase which will increase the length of the food-web. This change will affect the structure of the ecosystem, increasing assimilation losses, exposure to biomagnifying contaminants and changing nutrient cycles.
{"title":"Deep-sea food-web structure at South Sandwich Islands (Southern Ocean): net primary production as a main driver for interannual changes","authors":"José P. Queirós, Philip R. Hollyman, Paco Bustamante, Diana Vaz, Mark Belchier, José C. Xavier","doi":"10.1111/ecog.07263","DOIUrl":"https://doi.org/10.1111/ecog.07263","url":null,"abstract":"Food-webs are a major component of ecosystems and determinant for their functioning and structure. The food chain length (FCL) is a key feature of food-webs and it is crucial for the resistance of the community to external stressors. The Southern Ocean (SO) food-web is known for being short and dominated by an Antarctic krill <i>Euphausia superba</i> surplus, though recent studies proved the existence of different pathways. However, previous studies focused on the pelagic realm, with the deep-sea and benthopelagic coupling remaining poorly understood. Using stable isotopes of δ<sup>13</sup>C and δ<sup>15</sup>N in muscle from individuals collected during toothfish fishing seasons 2020, 2021 and 2022, we 1) studied the bathyal food-web structure at South Sandwich Islands; 2) evaluated the interannual variability of FCL; and 3) tested which FCL hypothesis better explains the variability at the SO deep-sea. Our results show that this food-web is composed of five trophic levels with both Patagonian <i>Dissostichus eleginoides</i> and Antarctic <i>Dissostichus mawsoni</i> toothfish as top predators. The 4th and 5th trophic levels are mostly composed of fish, while in the 3rd trophic level we mainly found cephalopods and crustaceans. The benthopelagic coupling occurs at different trophic levels, though mostly between the 3rd and 4th trophic level. The FCL varied between years, being in 2022 0.30 trophic levels shorter than in 2020. Our results suggest that food-webs including a benthic component are longer than pelagic and coastal SO food-webs. The FCL is positively related with net primary productivity, supporting that the productivity hypothesis explains the variability in FCL in SO bathyal food-webs in slope and seamount areas. With climate change, the productivity in the SO is expected to increase which will increase the length of the food-web. This change will affect the structure of the ecosystem, increasing assimilation losses, exposure to biomagnifying contaminants and changing nutrient cycles.","PeriodicalId":51026,"journal":{"name":"Ecography","volume":"1 1","pages":""},"PeriodicalIF":5.9,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142991161","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Don-Jean Léandri-Breton, Kyle H. Elliott, Arnaud Tarroux, Pierre Legagneux, William Jouanneau, Françoise Amélineau, Frédéric Angelier, Pierre Blévin, Vegard Sandøy Bråthen, Per Fauchald, Geir W. Gabrielsen, Aurélie Goutte, Sabrina Tartu, Børge Moe, Olivier Chastel
Understanding variation in animal distributions is a central and challenging question in ecology that has become particularly critical in the context of global environmental changes. While distributions are often studied for resident or breeding species, species range limits are equally important for migratory species in winter when population regulation may occur due to limited resources in the non-breeding season. A central hypothesis in several theories is that the density, fitness and performance of individuals decrease towards the edge of the range as organisms become maladapted when approaching the limit of their environmental tolerance (‘abundant centre hypothesis'). Energy is a critical resource, especially in winter when environmental conditions deteriorate, and this hypothesis predicts that high energy expenditure (low performance) at the range limit would lead to rapidly dwindling body mass and reduced fitness. We investigated this hypothesis in an Arctic-breeding seabird wintering in the North Atlantic, the black-legged kittiwake Rissa tridactyla. From 2008 to 2019, we tracked 117 adult kittiwakes (n = 176 tracks) with geolocation devices and saltwater immersion sensors to estimate the migratory strategies, time–activity budget and energy expenditure of individuals during winter, and estimated their reproductive success after their return to the colony during summer. Population density was indeed higher towards the centre of the range. However, contrary to the predictions, the energy expenditure of individuals was higher at the centre of the range and decreased towards the edge. In contrast, there were no spatial differences in the reproductive success of individuals wintering at the centre versus at the edge of their range. We conclude that performance and fitness did not increase towards the centre of the wintering range, implying that although resource acquisition was likely higher at the abundant centre, energy expenditure was also higher, so that individual fitness was constant across the winter range.
{"title":"Testing the abundant centre hypothesis in a seabird: higher energy expenditure at the wintering range centre does not reduce reproductive success","authors":"Don-Jean Léandri-Breton, Kyle H. Elliott, Arnaud Tarroux, Pierre Legagneux, William Jouanneau, Françoise Amélineau, Frédéric Angelier, Pierre Blévin, Vegard Sandøy Bråthen, Per Fauchald, Geir W. Gabrielsen, Aurélie Goutte, Sabrina Tartu, Børge Moe, Olivier Chastel","doi":"10.1111/ecog.07498","DOIUrl":"https://doi.org/10.1111/ecog.07498","url":null,"abstract":"Understanding variation in animal distributions is a central and challenging question in ecology that has become particularly critical in the context of global environmental changes. While distributions are often studied for resident or breeding species, species range limits are equally important for migratory species in winter when population regulation may occur due to limited resources in the non-breeding season. A central hypothesis in several theories is that the density, fitness and performance of individuals decrease towards the edge of the range as organisms become maladapted when approaching the limit of their environmental tolerance (‘abundant centre hypothesis'). Energy is a critical resource, especially in winter when environmental conditions deteriorate, and this hypothesis predicts that high energy expenditure (low performance) at the range limit would lead to rapidly dwindling body mass and reduced fitness. We investigated this hypothesis in an Arctic-breeding seabird wintering in the North Atlantic, the black-legged kittiwake <i>Rissa tridactyla</i>. From 2008 to 2019, we tracked 117 adult kittiwakes (n = 176 tracks) with geolocation devices and saltwater immersion sensors to estimate the migratory strategies, time–activity budget and energy expenditure of individuals during winter, and estimated their reproductive success after their return to the colony during summer. Population density was indeed higher towards the centre of the range. However, contrary to the predictions, the energy expenditure of individuals was higher at the centre of the range and decreased towards the edge. In contrast, there were no spatial differences in the reproductive success of individuals wintering at the centre versus at the edge of their range. We conclude that performance and fitness did not increase towards the centre of the wintering range, implying that although resource acquisition was likely higher at the abundant centre, energy expenditure was also higher, so that individual fitness was constant across the winter range.","PeriodicalId":51026,"journal":{"name":"Ecography","volume":"85 5 1","pages":""},"PeriodicalIF":5.9,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142991155","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Katie J. A. Goodwin, Nathalie I. Chardon, Kavya Pradhan, Janneke Hille Ris Lambers, Amy L. Angert
Climate change is causing many species' ranges to shift upslope to higher elevations as species track their climatic requirements. However, many species have not shifted in pace with recent warming (i.e. ‘range stasis'), possibly due to demographic lags or microclimatic buffering. The ‘lagged-response hypothesis' posits that range stasis disguises an underlying climatic sensitivity if range shifts lag the velocity of climate change due to slow colonization (i.e. colonization credits) or mortality (i.e. extinction debt). Alternatively, the ‘microclimatic buffering hypothesis' proposes that small-scale variation within the landscape, such as canopy cover, creates patches of suitable habitat within otherwise unsuitable macroclimates that create climate refugia and buffer range contractions. We simultaneously test both hypotheses by combining a large seed addition experiment of 25 plant species across macro- and micro-scale climate gradients with adult occurrence records to compare patterns of seedling recruitment relative to adult ranges and microclimate in the North Cascades, USA. Despite high species-to-species variability in recruitment, community-level patterns monitored for five years supported the lagged response hypothesis, with a mismatch between where seedlings recruit versus adults occur. On average, the seedling recruitment optimum shifted from the adult climatic range centre to historically cooler, wetter regions and many species recruited beyond their cold (e.g. leading) range edge. Meanwhile, successful recruitment occurred at warm and dry edges, despite recent climate change, suggesting that macroclimatic effects on recruitment do not drive trailing range dynamics. We did not detect evidence of microclimatic buffering due to canopy cover in recruitment patterns. Combined, our results suggest apparent range stasis in our system is a lagged response to climate change at the cool ends of species ranges, with range expansions likely to occur slowly or in a punctuated fashion.
{"title":"Lagged climate-driven range shifts at species' leading, but not trailing, range edges revealed by multispecies seed addition experiment","authors":"Katie J. A. Goodwin, Nathalie I. Chardon, Kavya Pradhan, Janneke Hille Ris Lambers, Amy L. Angert","doi":"10.1111/ecog.07331","DOIUrl":"https://doi.org/10.1111/ecog.07331","url":null,"abstract":"Climate change is causing many species' ranges to shift upslope to higher elevations as species track their climatic requirements. However, many species have not shifted in pace with recent warming (i.e. ‘range stasis'), possibly due to demographic lags or microclimatic buffering. The ‘lagged-response hypothesis' posits that range stasis disguises an underlying climatic sensitivity if range shifts lag the velocity of climate change due to slow colonization (i.e. colonization credits) or mortality (i.e. extinction debt). Alternatively, the ‘microclimatic buffering hypothesis' proposes that small-scale variation within the landscape, such as canopy cover, creates patches of suitable habitat within otherwise unsuitable macroclimates that create climate refugia and buffer range contractions. We simultaneously test both hypotheses by combining a large seed addition experiment of 25 plant species across macro- and micro-scale climate gradients with adult occurrence records to compare patterns of seedling recruitment relative to adult ranges and microclimate in the North Cascades, USA. Despite high species-to-species variability in recruitment, community-level patterns monitored for five years supported the lagged response hypothesis, with a mismatch between where seedlings recruit versus adults occur. On average, the seedling recruitment optimum shifted from the adult climatic range centre to historically cooler, wetter regions and many species recruited beyond their cold (e.g. leading) range edge. Meanwhile, successful recruitment occurred at warm and dry edges, despite recent climate change, suggesting that macroclimatic effects on recruitment do not drive trailing range dynamics. We did not detect evidence of microclimatic buffering due to canopy cover in recruitment patterns. Combined, our results suggest apparent range stasis in our system is a lagged response to climate change at the cool ends of species ranges, with range expansions likely to occur slowly or in a punctuated fashion.","PeriodicalId":51026,"journal":{"name":"Ecography","volume":"26 1","pages":""},"PeriodicalIF":5.9,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142975476","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Giovanni Poggiato, Jérémy Andréoletti, Laura J. Pollock, Wilfried Thuiller
Biotic interactions play a fundamental role in shaping multitrophic species communities, yet incorporating these interactions into species distribution models (SDMs) remains challenging. With the growing availability of species interaction networks, it is now feasible to integrate these interactions into SDMs for more comprehensive predictions. Here, we propose a novel framework that combines trophic interaction networks with Bayesian structural equation models, enabling each species to be modeled based on its interactions with predators or prey alongside environmental factors. This framework addresses issues of multicollinearity and error propagation, making it possible to predict species distributions in unobserved locations or under future environmental conditions, even when prey or predator distributions are unknown. We tested and validated our framework on realistic simulated communities spanning different theoretical models and ecological setups. scenarios. Our approach significantly improved the estimation of both potential and realized niches compared to single SDMs, with mean performance gains of 8% and 6%, respectively. These improvements were especially notable for species strongly regulated by biotic factors, thereby enhancing model predictive accuracy. Our framework supports integration with various SDM extensions, such as occupancy and integrated models, offering flexibility and adaptability for future developments. While not a universal solution that consistently outperforms single SDMs, our approach provides a valuable new tool for modeling multitrophic community distributions when biotic interactions are known or assumed.
{"title":"Integrating food webs in species distribution models can improve ecological niche estimation and predictions","authors":"Giovanni Poggiato, Jérémy Andréoletti, Laura J. Pollock, Wilfried Thuiller","doi":"10.1111/ecog.07546","DOIUrl":"https://doi.org/10.1111/ecog.07546","url":null,"abstract":"Biotic interactions play a fundamental role in shaping multitrophic species communities, yet incorporating these interactions into species distribution models (SDMs) remains challenging. With the growing availability of species interaction networks, it is now feasible to integrate these interactions into SDMs for more comprehensive predictions. Here, we propose a novel framework that combines trophic interaction networks with Bayesian structural equation models, enabling each species to be modeled based on its interactions with predators or prey alongside environmental factors. This framework addresses issues of multicollinearity and error propagation, making it possible to predict species distributions in unobserved locations or under future environmental conditions, even when prey or predator distributions are unknown. We tested and validated our framework on realistic simulated communities spanning different theoretical models and ecological setups. scenarios. Our approach significantly improved the estimation of both potential and realized niches compared to single SDMs, with mean performance gains of 8% and 6%, respectively. These improvements were especially notable for species strongly regulated by biotic factors, thereby enhancing model predictive accuracy. Our framework supports integration with various SDM extensions, such as occupancy and integrated models, offering flexibility and adaptability for future developments. While not a universal solution that consistently outperforms single SDMs, our approach provides a valuable new tool for modeling multitrophic community distributions when biotic interactions are known or assumed.","PeriodicalId":51026,"journal":{"name":"Ecography","volume":"51 1","pages":""},"PeriodicalIF":5.9,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142974570","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Katherine M. Magoulick, Erin E. Saupe, Alexander Farnsworth, Paul J. Valdes, Charles R. Marshall
The formation of the Isthmus of Panama allowed for migrations between the once separated continents of North and South America. This led to one of the greatest documented interchanges of biota in Earth history, wherein an array of species across many groups migrated between the continents. Glyptotherium, a giant extinct armadillo‐like grazer, is an example of a taxon that likely originated in South America and migrated to North America. Here we use Ecological niche modeling to test the extent of suitable conditions for Glyptotherium in Central America and surrounding regions during the intervals when the taxon is thought to have dispersed, allowing for assessment of plausible migration routes and the hypothesis that the genus migrated from North America back to South America during the Rancholabrean (14 000–240 000 years ago). Our niche modeling results show suitable abiotic conditions for Glyptotherium in Central America and the surrounding area throughout the Plio‐Pleistocene, with western South America (the ‘high road') suggested as their ancestors' route northwards. Depending on the extent of suitable conditions, it may have been possible for Glyptotherium to return to South America during the Rancholabrean. The results support previous hypotheses that the range of Glyptotherium was constrained by the need for warm, wet environments.
{"title":"Evaluating migration hypotheses for the extinct Glyptotherium using ecological niche modeling","authors":"Katherine M. Magoulick, Erin E. Saupe, Alexander Farnsworth, Paul J. Valdes, Charles R. Marshall","doi":"10.1111/ecog.07499","DOIUrl":"https://doi.org/10.1111/ecog.07499","url":null,"abstract":"The formation of the Isthmus of Panama allowed for migrations between the once separated continents of North and South America. This led to one of the greatest documented interchanges of biota in Earth history, wherein an array of species across many groups migrated between the continents. <jats:italic>Glyptotherium</jats:italic>, a giant extinct armadillo‐like grazer, is an example of a taxon that likely originated in South America and migrated to North America. Here we use Ecological niche modeling to test the extent of suitable conditions for <jats:italic>Glyptotherium</jats:italic> in Central America and surrounding regions during the intervals when the taxon is thought to have dispersed, allowing for assessment of plausible migration routes and the hypothesis that the genus migrated from North America back to South America during the Rancholabrean (14 000–240 000 years ago). Our niche modeling results show suitable abiotic conditions for <jats:italic>Glyptotherium</jats:italic> in Central America and the surrounding area throughout the Plio‐Pleistocene, with western South America (the ‘high road') suggested as their ancestors' route northwards. Depending on the extent of suitable conditions, it may have been possible for <jats:italic>Glyptotherium</jats:italic> to return to South America during the Rancholabrean. The results support previous hypotheses that the range of <jats:italic>Glyptotherium</jats:italic> was constrained by the need for warm, wet environments.","PeriodicalId":51026,"journal":{"name":"Ecography","volume":"90 1","pages":""},"PeriodicalIF":5.9,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142974571","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Eeva M. Soininen, Magnus Magnusson, Jane U. Jepsen, Nina E. Eide, Nigel G. Yoccoz, Anders Angerbjörn, Jo Inge Breisjøberget, Frauke Ecke, Dorothee Ehrich, Erik Framstad, Heikki Henttonen, Birger Hörnfeldt, Siw Killengreen, Johan Olofsson, Lauri Oksanen, Tarja Oksanen, Ole Einar Tveito, Rolf A. Ims
Long‐term studies of cyclic rodent populations have contributed fundamentally to the development of population ecology. Pioneering rodent studies have shown macroecological patterns of population dynamics in relation to latitude and have inspired similar studies in several other taxa. Nevertheless, such studies have not been able to disentangle the role of different environmental variables in shaping the macroecological patterns. We collected rodent time‐series from 26 locations spanning 10 latitudinal degrees in the tundra biome of Fennoscandia and assessed how population dynamics characteristics of the most prevalent species varied with latitude and environmental variables. While we found no relationship between latitude and population cycle peak interval, other characteristics of population dynamics showed latitudinal patterns. The environmental predictor variables provided insight into causes of these patterns, as 1) increased proportion of optimal habitat in the landscape led to higher density amplitudes in all species and 2) mid‐winter climate variability lowered the amplitude in Norwegian lemmings and grey‐sided voles. These results indicate that biome‐scale climate and landscape change can be expected to have profound impacts on rodent population cycles and that the macro‐ecology of such functionally important tundra ecosystem characteristics is likely to be subjected to transient dynamics.
{"title":"Macroecological patterns of rodent population dynamics shaped by bioclimatic gradients","authors":"Eeva M. Soininen, Magnus Magnusson, Jane U. Jepsen, Nina E. Eide, Nigel G. Yoccoz, Anders Angerbjörn, Jo Inge Breisjøberget, Frauke Ecke, Dorothee Ehrich, Erik Framstad, Heikki Henttonen, Birger Hörnfeldt, Siw Killengreen, Johan Olofsson, Lauri Oksanen, Tarja Oksanen, Ole Einar Tveito, Rolf A. Ims","doi":"10.1111/ecog.07058","DOIUrl":"https://doi.org/10.1111/ecog.07058","url":null,"abstract":"Long‐term studies of cyclic rodent populations have contributed fundamentally to the development of population ecology. Pioneering rodent studies have shown macroecological patterns of population dynamics in relation to latitude and have inspired similar studies in several other taxa. Nevertheless, such studies have not been able to disentangle the role of different environmental variables in shaping the macroecological patterns. We collected rodent time‐series from 26 locations spanning 10 latitudinal degrees in the tundra biome of Fennoscandia and assessed how population dynamics characteristics of the most prevalent species varied with latitude and environmental variables. While we found no relationship between latitude and population cycle peak interval, other characteristics of population dynamics showed latitudinal patterns. The environmental predictor variables provided insight into causes of these patterns, as 1) increased proportion of optimal habitat in the landscape led to higher density amplitudes in all species and 2) mid‐winter climate variability lowered the amplitude in Norwegian lemmings and grey‐sided voles. These results indicate that biome‐scale climate and landscape change can be expected to have profound impacts on rodent population cycles and that the macro‐ecology of such functionally important tundra ecosystem characteristics is likely to be subjected to transient dynamics.","PeriodicalId":51026,"journal":{"name":"Ecography","volume":"54 1","pages":""},"PeriodicalIF":5.9,"publicationDate":"2024-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142888927","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Gavia Lertzman‐Lepofsky, Aleksandra J. Dolezal, Mia Tayler Waters, Alexandre Fuster‐Calvo, Emily N. Black, Stephanie Flaman, Sam Straus, Ryan E. Langendorf, Isaac Eckert, Sophia Fan, Haley A. Branch, Nathalie Isabelle Chardon, Courtney G. Collins
Linking changes in taxon abundance to biotic and abiotic drivers over space and time is critical for understanding biodiversity responses to global change. Furthermore, deciphering temporal trends in relationships among taxa, including correlated abundance changes (e.g. synchrony), can facilitate predictions of future shifts. However, what drives these correlated changes over large scales are complex and understudied, impeding our ability to predict shifts in ecological communities. We used two global datasets containing abundance time‐series (BioTIME) and biotic interactions (GloBI) to quantify correlations among yearly changes in the abundance of pairs of geographically proximal taxa (genus pairs). We used a hierarchical linear model and cross‐validation to test the overall magnitude, direction and predictive accuracy of correlated abundance changes among genera at the global scale. We then tested how correlated abundance changes are influenced by latitude, biotic interactions, disturbance and time‐series length while accounting for differences among studies and taxonomic categories. We found that abundance changes between genus pairs are, on average, positively correlated over time, suggesting synchrony at the global scale. Furthermore, we found that abundance changes are more positively correlated with longer time‐series, with known biotic interactions and in disturbed habitats. However, the magnitude of these ecological drivers alone are relatively weak, with model predictive accuracy increasing approximately two‐fold with the inclusion of study identity and taxonomic category. This suggests that while patterns in abundance correlations are shaped by ecological drivers at the global scale, these drivers have limited utility in forecasting changes in abundances among unknown taxa or in the context of future global change. Our study indicates that including taxonomy and known ecological drivers can improve predictions of biodiversity loss over large spatial and temporal scales, but also that idiosyncrasies of different studies continue to weaken our ability to make global predictions.
{"title":"Temporal changes in taxon abundances are positively correlated but poorly predicted at the global scale","authors":"Gavia Lertzman‐Lepofsky, Aleksandra J. Dolezal, Mia Tayler Waters, Alexandre Fuster‐Calvo, Emily N. Black, Stephanie Flaman, Sam Straus, Ryan E. Langendorf, Isaac Eckert, Sophia Fan, Haley A. Branch, Nathalie Isabelle Chardon, Courtney G. Collins","doi":"10.1111/ecog.07195","DOIUrl":"https://doi.org/10.1111/ecog.07195","url":null,"abstract":"Linking changes in taxon abundance to biotic and abiotic drivers over space and time is critical for understanding biodiversity responses to global change. Furthermore, deciphering temporal trends in relationships among taxa, including correlated abundance changes (e.g. synchrony), can facilitate predictions of future shifts. However, what drives these correlated changes over large scales are complex and understudied, impeding our ability to predict shifts in ecological communities. We used two global datasets containing abundance time‐series (BioTIME) and biotic interactions (GloBI) to quantify correlations among yearly changes in the abundance of pairs of geographically proximal taxa (genus pairs). We used a hierarchical linear model and cross‐validation to test the overall magnitude, direction and predictive accuracy of correlated abundance changes among genera at the global scale. We then tested how correlated abundance changes are influenced by latitude, biotic interactions, disturbance and time‐series length while accounting for differences among studies and taxonomic categories. We found that abundance changes between genus pairs are, on average, positively correlated over time, suggesting synchrony at the global scale. Furthermore, we found that abundance changes are more positively correlated with longer time‐series, with known biotic interactions and in disturbed habitats. However, the magnitude of these ecological drivers alone are relatively weak, with model predictive accuracy increasing approximately two‐fold with the inclusion of study identity and taxonomic category. This suggests that while patterns in abundance correlations are shaped by ecological drivers at the global scale, these drivers have limited utility in forecasting changes in abundances among unknown taxa or in the context of future global change. Our study indicates that including taxonomy and known ecological drivers can improve predictions of biodiversity loss over large spatial and temporal scales, but also that idiosyncrasies of different studies continue to weaken our ability to make global predictions.","PeriodicalId":51026,"journal":{"name":"Ecography","volume":"12 1","pages":""},"PeriodicalIF":5.9,"publicationDate":"2024-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142888321","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Julia Indivero, Sean C. Anderson, Lewis A. K. Barnett, Timothy E. Essington, Eric J. Ward
Species distribution modeling is increasingly used to describe and anticipate consequences of a warming ocean. These models often identify statistical associations between distribution and environmental conditions such as temperature and oxygen, but rarely consider the mechanisms by which these environmental variables affect metabolism. Oxygen and temperature jointly govern the balance of oxygen supply to oxygen demand, and theory predicts thresholds below which population densities are diminished. However, parameterizing models with this joint dependence is challenging because of the paucity of experimental work for most species, and the limited applicability of experimental findings in situ. Here we ask whether the temperature-sensitivity of oxygen can be reliably inferred from species distribution observations in the field, using the U.S. Pacific Coast as a model system. We developed a statistical model that adapted the metabolic index — a compound metric that incorporates these joint effects on the ratio of oxygen supply and oxygen demand by applying an Arrhenius equation — and used a non-linear threshold function to link the index to fish distribution. Through simulation testing, we found that our statistical model could not precisely estimate the parameters due to inherent features of the distribution data. However, the model reliably estimated an overall metabolic index threshold effect. When applied to case studies of real data for two groundfish species, this new model provided a better fit to spatial distribution of one species, sablefish Anoplopoma fimbria, than previously used models, but did not for the other, longspine thornyhead Sebastolobus altivelis. This physiological framework may improve predictions of species distribution, even in novel environmental conditions. Further efforts to combine insights from physiology and realized species distributions will improve forecasts of species' responses to future environmental changes.
{"title":"Estimating a physiological threshold to oxygen and temperature from marine monitoring data reveals challenges and opportunities for forecasting distribution shifts","authors":"Julia Indivero, Sean C. Anderson, Lewis A. K. Barnett, Timothy E. Essington, Eric J. Ward","doi":"10.1111/ecog.07413","DOIUrl":"https://doi.org/10.1111/ecog.07413","url":null,"abstract":"Species distribution modeling is increasingly used to describe and anticipate consequences of a warming ocean. These models often identify statistical associations between distribution and environmental conditions such as temperature and oxygen, but rarely consider the mechanisms by which these environmental variables affect metabolism. Oxygen and temperature jointly govern the balance of oxygen supply to oxygen demand, and theory predicts thresholds below which population densities are diminished. However, parameterizing models with this joint dependence is challenging because of the paucity of experimental work for most species, and the limited applicability of experimental findings in situ. Here we ask whether the temperature-sensitivity of oxygen can be reliably inferred from species distribution observations in the field, using the U.S. Pacific Coast as a model system. We developed a statistical model that adapted the metabolic index — a compound metric that incorporates these joint effects on the ratio of oxygen supply and oxygen demand by applying an Arrhenius equation — and used a non-linear threshold function to link the index to fish distribution. Through simulation testing, we found that our statistical model could not precisely estimate the parameters due to inherent features of the distribution data. However, the model reliably estimated an overall metabolic index threshold effect. When applied to case studies of real data for two groundfish species, this new model provided a better fit to spatial distribution of one species, sablefish <i>Anoplopoma fimbria</i>, than previously used models, but did not for the other, longspine thornyhead <i>Sebastolobus altivelis</i>. This physiological framework may improve predictions of species distribution, even in novel environmental conditions. Further efforts to combine insights from physiology and realized species distributions will improve forecasts of species' responses to future environmental changes.","PeriodicalId":51026,"journal":{"name":"Ecography","volume":"25 1","pages":""},"PeriodicalIF":5.9,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142849566","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}