{"title":"Climate change is aggravating dengue and yellow fever transmission risk","authors":"Alisa Aliaga-Samanez, David Romero, Kris Murray, Marina Cobos-Mayo, Marina Segura, Raimundo Real, Jesús Olivero","doi":"10.1111/ecog.06942","DOIUrl":null,"url":null,"abstract":"<p>Dengue and yellow fever have complex cycles, involving urban and sylvatic mosquitoes, and non-human primate hosts. To date, efforts to assess the effect of climate change on these diseases have neglected the combination of such crucial factors. Recent studies only considered urban vectors. This is the first study to include them together with sylvatic vectors and the distribution of primates to analyse the effect of climate change on these diseases. We used previously published models, based on machine learning algorithms and fuzzy logic, to identify areas where climatic favourability for the relevant transmission agents could change: 1) favourable areas for the circulation of the viruses due to the environment and to non-human primate distributions; 2) the favourability for urban and sylvatic vectors. We obtained projections of future transmission risk for two future periods and for each disease, and implemented uncertainty analyses to test for predictions reliability. Areas currently favourable for both diseases could keep being climatically favourable, while global favourability could increase a 7% for yellow fever and a 10% increase for dengue. Areas likely to be more affected in the future for dengue include West Africa, South Asia, the Gulf of Mexico, Central America and the Amazon basin. A possible spread of dengue could take place into Europe, the Mediterranean basin, the UK and Portugal; and, in Asia, into northern China. For yellow fever, climate could become more favourable in Central and Southeast Africa; India; and in north and southeast South America, including Brazil, Paraguay, Bolivia, Peru, Colombia and Venezuela. In Brazil, favourability for yellow fever will probably increase in the south, the west and the east. Areas where the transmission risk spread is consistent to the dispersal of vectors are highlighted in respect of areas where the expected spread is directly attributable to environmental changes. Both scenarios could involve different prevention strategies.</p>","PeriodicalId":51026,"journal":{"name":"Ecography","volume":"2024 10","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/ecog.06942","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecography","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/ecog.06942","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIODIVERSITY CONSERVATION","Score":null,"Total":0}
引用次数: 0
Abstract
Dengue and yellow fever have complex cycles, involving urban and sylvatic mosquitoes, and non-human primate hosts. To date, efforts to assess the effect of climate change on these diseases have neglected the combination of such crucial factors. Recent studies only considered urban vectors. This is the first study to include them together with sylvatic vectors and the distribution of primates to analyse the effect of climate change on these diseases. We used previously published models, based on machine learning algorithms and fuzzy logic, to identify areas where climatic favourability for the relevant transmission agents could change: 1) favourable areas for the circulation of the viruses due to the environment and to non-human primate distributions; 2) the favourability for urban and sylvatic vectors. We obtained projections of future transmission risk for two future periods and for each disease, and implemented uncertainty analyses to test for predictions reliability. Areas currently favourable for both diseases could keep being climatically favourable, while global favourability could increase a 7% for yellow fever and a 10% increase for dengue. Areas likely to be more affected in the future for dengue include West Africa, South Asia, the Gulf of Mexico, Central America and the Amazon basin. A possible spread of dengue could take place into Europe, the Mediterranean basin, the UK and Portugal; and, in Asia, into northern China. For yellow fever, climate could become more favourable in Central and Southeast Africa; India; and in north and southeast South America, including Brazil, Paraguay, Bolivia, Peru, Colombia and Venezuela. In Brazil, favourability for yellow fever will probably increase in the south, the west and the east. Areas where the transmission risk spread is consistent to the dispersal of vectors are highlighted in respect of areas where the expected spread is directly attributable to environmental changes. Both scenarios could involve different prevention strategies.
期刊介绍:
ECOGRAPHY publishes exciting, novel, and important articles that significantly advance understanding of ecological or biodiversity patterns in space or time. Papers focusing on conservation or restoration are welcomed, provided they are anchored in ecological theory and convey a general message that goes beyond a single case study. We encourage papers that seek advancing the field through the development and testing of theory or methodology, or by proposing new tools for analysis or interpretation of ecological phenomena. Manuscripts are expected to address general principles in ecology, though they may do so using a specific model system if they adequately frame the problem relative to a generalized ecological question or problem.
Purely descriptive papers are considered only if breaking new ground and/or describing patterns seldom explored. Studies focused on a single species or single location are generally discouraged unless they make a significant contribution to advancing general theory or understanding of biodiversity patterns and processes. Manuscripts merely confirming or marginally extending results of previous work are unlikely to be considered in Ecography.
Papers are judged by virtue of their originality, appeal to general interest, and their contribution to new developments in studies of spatial and temporal ecological patterns. There are no biases with regard to taxon, biome, or biogeographical area.