Terpenoid-based high-performance polyester with tacticity-independent crystallinity and chemical circularity

IF 19.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Chem Pub Date : 2024-10-10 DOI:10.1016/j.chempr.2024.05.024
{"title":"Terpenoid-based high-performance polyester with tacticity-independent crystallinity and chemical circularity","authors":"","doi":"10.1016/j.chempr.2024.05.024","DOIUrl":null,"url":null,"abstract":"<div><div>The development of chemically circular, bio-based polymers is an urgently needed solution to combat the plastic waste crisis. However, the most prominent, commercially implemented bio-based aliphatic polyester, poly(lactic acid) (PLA), is brittle, therefore largely limiting its broad applications. Herein, we introduce a class of aliphatic polyesters produced through the ring-opening polymerization (ROP) of (1<em>R</em>,5<em>S</em>)-8,8-dimethyl-3-oxabicyclo[3.2.1]octan-2-one (D-CamL) and the racemic mixture (<em>rac</em>-CamL), which exhibit superior material properties relative to PLA. A metal-based or organic catalyst was used for the modulation of polymer tacticity. Notably, regardless of tacticity, poly(CamL) exhibits intrinsic crystallinity, resulting in polyesters with high yield stress (24–39 MPa), high Young’s modulus (1.36–2.00 GPa), tunable fracture strains (6%–218%), and high melting temperatures (161°C–225°C). Importantly, poly(CamL) can be chemically recycled to monomer in high yield, and virgin-quality poly(CamL) is obtained after repolymerization. Overall, poly(CamL) represents a new class of bio-derived and chemically circular high-performance polyesters.</div></div>","PeriodicalId":268,"journal":{"name":"Chem","volume":"10 10","pages":"Pages 3040-3054"},"PeriodicalIF":19.1000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chem","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2451929424002468","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The development of chemically circular, bio-based polymers is an urgently needed solution to combat the plastic waste crisis. However, the most prominent, commercially implemented bio-based aliphatic polyester, poly(lactic acid) (PLA), is brittle, therefore largely limiting its broad applications. Herein, we introduce a class of aliphatic polyesters produced through the ring-opening polymerization (ROP) of (1R,5S)-8,8-dimethyl-3-oxabicyclo[3.2.1]octan-2-one (D-CamL) and the racemic mixture (rac-CamL), which exhibit superior material properties relative to PLA. A metal-based or organic catalyst was used for the modulation of polymer tacticity. Notably, regardless of tacticity, poly(CamL) exhibits intrinsic crystallinity, resulting in polyesters with high yield stress (24–39 MPa), high Young’s modulus (1.36–2.00 GPa), tunable fracture strains (6%–218%), and high melting temperatures (161°C–225°C). Importantly, poly(CamL) can be chemically recycled to monomer in high yield, and virgin-quality poly(CamL) is obtained after repolymerization. Overall, poly(CamL) represents a new class of bio-derived and chemically circular high-performance polyesters.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
萜类高性能聚酯,具有与触觉无关的结晶性和化学循环性
开发化学循环型生物基聚合物是应对塑料废弃物危机急需的解决方案。然而,最著名的商业化生物基脂肪族聚酯--聚乳酸(PLA)却很脆,因此在很大程度上限制了它的广泛应用。在本文中,我们介绍了通过 (1R,5S)-8,8-二甲基-3-氧杂双环[3.2.1]辛烷-2-酮(D-CamL)和外消旋混合物(rac-CamL)的开环聚合(ROP)生产的一类脂肪族聚酯,与聚乳酸相比,这种聚酯表现出更优越的材料特性。金属催化剂或有机催化剂可用于调节聚合物的触变性。值得注意的是,无论触变性如何,聚(CamL)都表现出固有的结晶性,因此聚酯具有高屈服应力(24-39 兆帕)、高杨氏模量(1.36-2.00 GPa)、可调断裂应变(6%-218%)和高熔化温度(161°C-225°C)。重要的是,聚(CamL)可以通过化学方法高产率地回收为单体,并在重新聚合后获得原生质量的聚(CamL)。总之,聚(CamL)是一类新型的生物衍生和化学循环高性能聚酯。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Chem
Chem Environmental Science-Environmental Chemistry
CiteScore
32.40
自引率
1.30%
发文量
281
期刊介绍: Chem, affiliated with Cell as its sister journal, serves as a platform for groundbreaking research and illustrates how fundamental inquiries in chemistry and its related fields can contribute to addressing future global challenges. It was established in 2016, and is currently edited by Robert Eagling.
期刊最新文献
Electrolyte design for high hydrogen peroxide production rates utilizing commercial carbon gas diffusion electrodes Excited-state protonation and reduction enables the umpolung Birch reduction of naphthalenes Drinking water purification using metal-organic frameworks: Removal of disinfection by-products Antigen spatial-matching polyaptamer nanostructure to block coronavirus infection and alleviate inflammation Engineering biotic-abiotic hybrid systems for solar-to-chemical conversion
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1