{"title":"3D DEM investigation of shear behavior and interaction mechanism of woven geotextile-sand interfaces","authors":"Yafei Jia , Jun Zhang , Yewei Zheng","doi":"10.1016/j.geotexmem.2024.06.004","DOIUrl":null,"url":null,"abstract":"<div><p>This paper presents a numerical study on the investigation of microscopic mechanism governing the interaction of woven geotextile and angular sand employing the 3D discrete element method (DEM). The surface texture and tensile properties of the geotextile were simulated using overlapping spherical particles, and the angular sand was simulated using rigid blocks. The DEM models were fully calibrated based on previous experimental data. The shear and dilation zones of sand near the interface were quantitatively determined based on particle displacement gradients. Analysis of contact forces was conducted to explain the microscopic mechanism behind the macroscopic strength evolution. The influence of geotextile surface roughness on the shear strength of the geotextile-sand interface is also discussed. The results show that the failure mode of the woven geotextile-sand interface is a combination of particle sliding failure along the geotextile surface and shear failure of the sand within the shear zone above the interface. There is a rapid redistribution of contact forces prior to reaching peak shear resistance, and the average normal contact force within the shear zone remains relatively constant after the peak shear stress is achieved. A completely developed shear zone stabilizes soil deformation, typically after achieving the peak shear resistance.</p></div>","PeriodicalId":55096,"journal":{"name":"Geotextiles and Geomembranes","volume":"52 5","pages":"Pages 1011-1023"},"PeriodicalIF":4.7000,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geotextiles and Geomembranes","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0266114424000657","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0
Abstract
This paper presents a numerical study on the investigation of microscopic mechanism governing the interaction of woven geotextile and angular sand employing the 3D discrete element method (DEM). The surface texture and tensile properties of the geotextile were simulated using overlapping spherical particles, and the angular sand was simulated using rigid blocks. The DEM models were fully calibrated based on previous experimental data. The shear and dilation zones of sand near the interface were quantitatively determined based on particle displacement gradients. Analysis of contact forces was conducted to explain the microscopic mechanism behind the macroscopic strength evolution. The influence of geotextile surface roughness on the shear strength of the geotextile-sand interface is also discussed. The results show that the failure mode of the woven geotextile-sand interface is a combination of particle sliding failure along the geotextile surface and shear failure of the sand within the shear zone above the interface. There is a rapid redistribution of contact forces prior to reaching peak shear resistance, and the average normal contact force within the shear zone remains relatively constant after the peak shear stress is achieved. A completely developed shear zone stabilizes soil deformation, typically after achieving the peak shear resistance.
期刊介绍:
The range of products and their applications has expanded rapidly over the last decade with geotextiles and geomembranes being specified world wide. This rapid growth is paralleled by a virtual explosion of technology. Current reference books and even manufacturers' sponsored publications tend to date very quickly and the need for a vehicle to bring together and discuss the growing body of technology now available has become evident.
Geotextiles and Geomembranes fills this need and provides a forum for the dissemination of information amongst research workers, designers, users and manufacturers. By providing a growing fund of information the journal increases general awareness, prompts further research and assists in the establishment of international codes and regulations.