The microstructural dependence of ionic transport in bi-continuous nanoporous metal

IF 8.3 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Acta Materialia Pub Date : 2024-06-24 DOI:10.1016/j.actamat.2024.120134
Congcheng Wang , Anson Tsang , Yingji Sang , Diwen Xiao , Yuan Xu , Shida Yang , Ling-Zhi Liu , Qiang Zheng , Pan Liu , Hai-Jun Jin , Qing Chen
{"title":"The microstructural dependence of ionic transport in bi-continuous nanoporous metal","authors":"Congcheng Wang ,&nbsp;Anson Tsang ,&nbsp;Yingji Sang ,&nbsp;Diwen Xiao ,&nbsp;Yuan Xu ,&nbsp;Shida Yang ,&nbsp;Ling-Zhi Liu ,&nbsp;Qiang Zheng ,&nbsp;Pan Liu ,&nbsp;Hai-Jun Jin ,&nbsp;Qing Chen","doi":"10.1016/j.actamat.2024.120134","DOIUrl":null,"url":null,"abstract":"<div><p>Ionic transport in electrolyte-imbibing nanopores is considered a common bottleneck in the functional applications of bi-continuous nanoporous (NP) metals, which in turn offer a unique opportunity to understand structure-transport relationships at nanoscales. By dealloying an Ag-Au alloy and isothermal coarsening, we can control the pore size of NP Au in the range of 13 nm to 2.4 µm and the porosity between 38 % and 69 %. By reduction-induced decomposition of AgCl, we can further control the structural hierarchy and the pore orientation of NP Ag. In these NP metals, we measure the effective conductivities of 1 M NaClO<sub>4</sub> to range from 7 % to 44 % of that of a free solution. The tortuosity of NP Au displays weak dependences on both the pore size and the porosity, consistent with the observed self-similarity in coarsening, except for those of pores narrower than 25 nm, which we consider deviating from the well-coarsened pore geometry. For NP Ag, rapid transport is observed for the hierarchical and the oriented structures; the former can be explained with the Maxwell-Garnett equation and the latter underlines random orientations as the common cause of slow transport. We then demonstrate the practical significance of the structure-transport relationship in the application of NP Ag in CO<sub>2</sub> reduction.</p></div>","PeriodicalId":238,"journal":{"name":"Acta Materialia","volume":null,"pages":null},"PeriodicalIF":8.3000,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Materialia","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359645424004853","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Ionic transport in electrolyte-imbibing nanopores is considered a common bottleneck in the functional applications of bi-continuous nanoporous (NP) metals, which in turn offer a unique opportunity to understand structure-transport relationships at nanoscales. By dealloying an Ag-Au alloy and isothermal coarsening, we can control the pore size of NP Au in the range of 13 nm to 2.4 µm and the porosity between 38 % and 69 %. By reduction-induced decomposition of AgCl, we can further control the structural hierarchy and the pore orientation of NP Ag. In these NP metals, we measure the effective conductivities of 1 M NaClO4 to range from 7 % to 44 % of that of a free solution. The tortuosity of NP Au displays weak dependences on both the pore size and the porosity, consistent with the observed self-similarity in coarsening, except for those of pores narrower than 25 nm, which we consider deviating from the well-coarsened pore geometry. For NP Ag, rapid transport is observed for the hierarchical and the oriented structures; the former can be explained with the Maxwell-Garnett equation and the latter underlines random orientations as the common cause of slow transport. We then demonstrate the practical significance of the structure-transport relationship in the application of NP Ag in CO2 reduction.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
双连续纳米多孔金属中离子传输的微观结构依赖性
电解质掺杂纳米孔中的离子传输被认为是双连续纳米多孔(NP)金属功能应用中的一个常见瓶颈,这反过来又为了解纳米尺度的结构-传输关系提供了一个独特的机会。通过脱合金和等温粗化,我们可以将 NP 金的孔径控制在 13 纳米到 2.4 微米之间,孔隙率控制在 38% 到 69% 之间。通过还原诱导分解 AgCl,我们可以进一步控制 NP Ag 的结构层次和孔取向。在这些 NP 金属中,我们测得 1 M NaClO 的有效电导率为游离溶液的 7% 至 44%。NP Au 的曲折度与孔径和孔隙率的关系都很微弱,这与观察到的粗化自相似性一致,但那些窄于 25 nm 的孔隙除外,我们认为这些孔隙偏离了良好粗化的孔隙几何形状。对于 NP Ag,我们观察到分层结构和定向结构的快速传输;前者可以用 Maxwell-Garnett 方程来解释,后者则强调随机定向是导致缓慢传输的共同原因。然后,我们证明了结构-传输关系在将 NP Ag 应用于一氧化碳还原过程中的实际意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Acta Materialia
Acta Materialia 工程技术-材料科学:综合
CiteScore
16.10
自引率
8.50%
发文量
801
审稿时长
53 days
期刊介绍: Acta Materialia serves as a platform for publishing full-length, original papers and commissioned overviews that contribute to a profound understanding of the correlation between the processing, structure, and properties of inorganic materials. The journal seeks papers with high impact potential or those that significantly propel the field forward. The scope includes the atomic and molecular arrangements, chemical and electronic structures, and microstructure of materials, focusing on their mechanical or functional behavior across all length scales, including nanostructures.
期刊最新文献
Unraveling factors affecting the reversibility of martensitic phase transformation in FeNiCoAlTi shape memory alloys: Insights from HR-EBSD and acoustic emission analysis Chalcogenide perovskite BaZrS3 bulks for thermoelectric conversion with ultra-high carrier mobility and low thermal conductivity Dynamic recrystallization in a near β titanium alloy under different deformation modes – Transition and correlation The role of microfaceting in heteroepitaxial interfaces Abnormal grain growth behavior in gradient nanostructured titanium investigated by coupled quasi-in-situ EBSD experiments and phase-field simulations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1