Deep Conditional Generative Adversarial Networks for Efficient Channel Estimation in AmBC Systems

Shayan Zargari;Chintha Tellambura;Amine Maaref;Geoffrey Ye Li
{"title":"Deep Conditional Generative Adversarial Networks for Efficient Channel Estimation in AmBC Systems","authors":"Shayan Zargari;Chintha Tellambura;Amine Maaref;Geoffrey Ye Li","doi":"10.1109/TMLCN.2024.3413669","DOIUrl":null,"url":null,"abstract":"In ambient backscatter communication (AmBC), battery-free devices (tags) harvest energy from ambient radio frequency (RF) signals and communicate with readers. Although reliable channel estimation (CE) is critical, classical pilot-based estimators tend to perform poorly. To address this challenge, we treat CE as a denoising problem using conditional generative adversarial networks (CGANs). A three-dimensional (3D) denoising block leverages spatial and temporal characteristics of pilot signals, considering both real and imaginary components of channel matrices. The proposed CGAN estimator is extensively evaluated against traditional estimators like minimum mean-squared error (MMSE), least squares (LS), convolutional neural network (CNN), CNN-based deep residual learning denoiser (CRLD), and blind estimation. Simulation results show 82% gain of the proposed estimator over CRLD and MMSE estimators at an SNR of 5 dB. Moreover, it has advanced learning capabilities and accurately replicates complex channel characteristics.","PeriodicalId":100641,"journal":{"name":"IEEE Transactions on Machine Learning in Communications and Networking","volume":"2 ","pages":"805-822"},"PeriodicalIF":0.0000,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10555303","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Machine Learning in Communications and Networking","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10555303/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In ambient backscatter communication (AmBC), battery-free devices (tags) harvest energy from ambient radio frequency (RF) signals and communicate with readers. Although reliable channel estimation (CE) is critical, classical pilot-based estimators tend to perform poorly. To address this challenge, we treat CE as a denoising problem using conditional generative adversarial networks (CGANs). A three-dimensional (3D) denoising block leverages spatial and temporal characteristics of pilot signals, considering both real and imaginary components of channel matrices. The proposed CGAN estimator is extensively evaluated against traditional estimators like minimum mean-squared error (MMSE), least squares (LS), convolutional neural network (CNN), CNN-based deep residual learning denoiser (CRLD), and blind estimation. Simulation results show 82% gain of the proposed estimator over CRLD and MMSE estimators at an SNR of 5 dB. Moreover, it has advanced learning capabilities and accurately replicates complex channel characteristics.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于 AmBC 系统高效信道估计的深度条件生成对抗网络
在环境反向散射通信(AmBC)中,无电池设备(标签)从环境射频(RF)信号中获取能量并与阅读器通信。尽管可靠的信道估计(CE)至关重要,但基于先导的经典估计器往往表现不佳。为了应对这一挑战,我们使用条件生成对抗网络(CGAN)将信道估计视为去噪问题。三维(3D)去噪块利用先导信号的空间和时间特性,同时考虑信道矩阵的实分量和虚分量。针对最小均方误差(MMSE)、最小二乘法(LS)、卷积神经网络(CNN)、基于 CNN 的深度残差学习去噪器(CRLD)和盲估计等传统估计器,对所提出的 CGAN 估计器进行了广泛评估。仿真结果表明,在信噪比为 5 dB 时,与 CRLD 和 MMSE 相比,所提出的估计器的增益达 82%。此外,它还具有先进的学习能力,能准确复制复杂的信道特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Asynchronous Real-Time Federated Learning for Anomaly Detection in Microservice Cloud Applications Conditional Denoising Diffusion Probabilistic Models for Data Reconstruction Enhancement in Wireless Communications Multi-Agent Reinforcement Learning With Action Masking for UAV-Enabled Mobile Communications Online Learning for Intelligent Thermal Management of Interference-Coupled and Passively Cooled Base Stations Robust and Lightweight Modeling of IoT Network Behaviors From Raw Traffic Packets
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1