Visualization of Multiple-Resonance-Induced Frontier Molecular Orbitals in a Single Multiple-Resonance Thermally Activated Delayed Fluorescence Molecule

IF 15.8 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY ACS Nano Pub Date : 2024-06-27 DOI:10.1021/acsnano.4c04813
Jaehyun Bae, Miyabi Imai-Imada*, Hyung Suk Kim, Minhui Lee, Hiroshi Imada, Youichi Tsuchiya, Takuji Hatakeyama*, Chihaya Adachi* and Yousoo Kim*, 
{"title":"Visualization of Multiple-Resonance-Induced Frontier Molecular Orbitals in a Single Multiple-Resonance Thermally Activated Delayed Fluorescence Molecule","authors":"Jaehyun Bae,&nbsp;Miyabi Imai-Imada*,&nbsp;Hyung Suk Kim,&nbsp;Minhui Lee,&nbsp;Hiroshi Imada,&nbsp;Youichi Tsuchiya,&nbsp;Takuji Hatakeyama*,&nbsp;Chihaya Adachi* and Yousoo Kim*,&nbsp;","doi":"10.1021/acsnano.4c04813","DOIUrl":null,"url":null,"abstract":"<p >The spatial distribution and electronic properties of the frontier molecular orbitals (FMOs) in a thermally activated delayed fluorescence (TADF) molecule contribute significantly to the TADF properties, and thus, a detailed understanding and sophisticated control of the FMOs are fundamental to the design of TADF molecules. However, for multiple-resonance (MR)-TADF molecules that achieve spatial separation of FMOs by the MR effect, the distinctive distribution of these molecular orbitals poses significant challenges for conventional computational analysis and ensemble averaging methods to elucidate the FMOs’ separation and the precise mechanism of luminescence. Therefore, the visualization and analysis of electronic states with the specific energy level of a single MR-TADF molecule will provide a deeper understanding of the TADF mechanism. Here, scanning tunneling microscopy/spectroscopy (STM/STS) was used to investigate the electronic states of the DABNA-1 molecule at the atomic scale. FMOs’ visualization and local density of states analysis of the DABNA-1 molecule clearly show that MR-TADF molecules also have well-separated FMOs according to the internal heteroatom arrangement, providing insights that complement existing theoretical prediction methods.</p>","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":null,"pages":null},"PeriodicalIF":15.8000,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsnano.4c04813","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The spatial distribution and electronic properties of the frontier molecular orbitals (FMOs) in a thermally activated delayed fluorescence (TADF) molecule contribute significantly to the TADF properties, and thus, a detailed understanding and sophisticated control of the FMOs are fundamental to the design of TADF molecules. However, for multiple-resonance (MR)-TADF molecules that achieve spatial separation of FMOs by the MR effect, the distinctive distribution of these molecular orbitals poses significant challenges for conventional computational analysis and ensemble averaging methods to elucidate the FMOs’ separation and the precise mechanism of luminescence. Therefore, the visualization and analysis of electronic states with the specific energy level of a single MR-TADF molecule will provide a deeper understanding of the TADF mechanism. Here, scanning tunneling microscopy/spectroscopy (STM/STS) was used to investigate the electronic states of the DABNA-1 molecule at the atomic scale. FMOs’ visualization and local density of states analysis of the DABNA-1 molecule clearly show that MR-TADF molecules also have well-separated FMOs according to the internal heteroatom arrangement, providing insights that complement existing theoretical prediction methods.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
单个多重共振热激活延迟荧光分子中多重共振诱导的前沿分子轨道的可视化。
热激活延迟荧光(TADF)分子中前沿分子轨道(FMO)的空间分布和电子特性对 TADF 特性有重要影响,因此,对 FMO 的详细了解和精密控制是 TADF 分子设计的基础。然而,对于通过磁共振效应实现 FMO 空间分离的多重共振(MR)-TADF 分子来说,这些分子轨道的独特分布对传统的计算分析和集合平均法阐明 FMO 的分离和精确的发光机制构成了巨大挑战。因此,对单个 MR-TADF 分子特定能级的电子状态进行可视化分析将有助于加深对 TADF 机制的理解。在此,我们使用扫描隧道显微镜/光谱学(STM/STS)在原子尺度上研究了 DABNA-1 分子的电子态。DABNA-1分子的FMOs可视化和局域态密度分析清楚地表明,MR-TADF分子根据内部杂原子的排列也具有良好分离的FMOs,这为补充现有的理论预测方法提供了启示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Nano
ACS Nano 工程技术-材料科学:综合
CiteScore
26.00
自引率
4.10%
发文量
1627
审稿时长
1.7 months
期刊介绍: ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.
期刊最新文献
23.81%-Efficiency Flexible Inverted Perovskite Solar Cells with Enhanced Stability and Flexibility via a Lewis Base Passivation. Biomimetic Trypsin-Responsive Structure-Bridged Mesoporous Organosilica Nanomedicine for Precise Treatment of Acute Pancreatitis. Direct Optical Patterning of Metal-Organic Frameworks via Photoacid-Induced Etching. Quantifying Ultrafast Energy Transfer from Plasmonic Hot Carriers for Pulsed Photocatalysis on Nanostructures. Transforming Albumin into a Trojan Horse of Immunotherapy-Resistant Colorectal Cancer with a High Microsatellite Instability.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1