Detection and Segmentation of Glioma Tumors Utilizing a UNet Convolutional Neural Network Approach with Non-Subsampled Shearlet Transform.

IF 1.4 4区 生物学 Q4 BIOCHEMICAL RESEARCH METHODS Journal of Computational Biology Pub Date : 2024-08-01 Epub Date: 2024-06-27 DOI:10.1089/cmb.2023.0339
M Tamilarasi, S Kumarganesh, K Martin Sagayam, J Andrew
{"title":"Detection and Segmentation of Glioma Tumors Utilizing a UNet Convolutional Neural Network Approach with Non-Subsampled Shearlet Transform.","authors":"M Tamilarasi, S Kumarganesh, K Martin Sagayam, J Andrew","doi":"10.1089/cmb.2023.0339","DOIUrl":null,"url":null,"abstract":"<p><p>The prompt and precise identification and delineation of tumor regions within glioma brain images are critical for mitigating the risks associated with this life-threatening ailment. In this study, we employ the UNet convolutional neural network (CNN) architecture for glioma tumor detection. Our proposed methodology comprises a transformation module, a feature extraction module, and a tumor segmentation module. The spatial domain representation of brain magnetic resonance imaging images undergoes decomposition into low- and high-frequency subbands via a non-subsampled shearlet transform. Leveraging the selective and directive characteristics of this transform enhances the classification efficacy of our proposed system. Shearlet features are extracted from both low- and high-frequency subbands and subsequently classified using the UNet-CNN architecture to identify tumor regions within glioma brain images. We validate our proposed glioma tumor detection methodology using publicly available datasets, namely Brain Tumor Segmentation (BRATS) 2019 and The Cancer Genome Atlas (TCGA). The mean classification rates achieved by our system are 99.1% for the BRATS 2019 dataset and 97.8% for the TCGA dataset. Furthermore, our system demonstrates notable performance metrics on the BRATS 2019 dataset, including 98.2% sensitivity, 98.7% specificity, 98.9% accuracy, 98.7% intersection over union, and 98.5% disc similarity coefficient. Similarly, on the TCGA dataset, our system achieves 97.7% sensitivity, 98.2% specificity, 98.7% accuracy, 98.6% intersection over union, and 98.4% disc similarity coefficient. Comparative analysis against state-of-the-art methods underscores the efficacy of our proposed glioma brain tumor detection approach.</p>","PeriodicalId":15526,"journal":{"name":"Journal of Computational Biology","volume":" ","pages":"757-768"},"PeriodicalIF":1.4000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1089/cmb.2023.0339","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/27 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

The prompt and precise identification and delineation of tumor regions within glioma brain images are critical for mitigating the risks associated with this life-threatening ailment. In this study, we employ the UNet convolutional neural network (CNN) architecture for glioma tumor detection. Our proposed methodology comprises a transformation module, a feature extraction module, and a tumor segmentation module. The spatial domain representation of brain magnetic resonance imaging images undergoes decomposition into low- and high-frequency subbands via a non-subsampled shearlet transform. Leveraging the selective and directive characteristics of this transform enhances the classification efficacy of our proposed system. Shearlet features are extracted from both low- and high-frequency subbands and subsequently classified using the UNet-CNN architecture to identify tumor regions within glioma brain images. We validate our proposed glioma tumor detection methodology using publicly available datasets, namely Brain Tumor Segmentation (BRATS) 2019 and The Cancer Genome Atlas (TCGA). The mean classification rates achieved by our system are 99.1% for the BRATS 2019 dataset and 97.8% for the TCGA dataset. Furthermore, our system demonstrates notable performance metrics on the BRATS 2019 dataset, including 98.2% sensitivity, 98.7% specificity, 98.9% accuracy, 98.7% intersection over union, and 98.5% disc similarity coefficient. Similarly, on the TCGA dataset, our system achieves 97.7% sensitivity, 98.2% specificity, 98.7% accuracy, 98.6% intersection over union, and 98.4% disc similarity coefficient. Comparative analysis against state-of-the-art methods underscores the efficacy of our proposed glioma brain tumor detection approach.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用 UNet 卷积神经网络方法和非子采样剪切力变换检测和分割胶质瘤肿瘤
及时、准确地识别和划分脑胶质瘤图像中的肿瘤区域,对于降低这种危及生命的疾病带来的风险至关重要。在本研究中,我们采用 UNet 卷积神经网络(CNN)架构来检测胶质瘤肿瘤。我们提出的方法包括转换模块、特征提取模块和肿瘤分割模块。脑磁共振成像图像的空间域表示通过非小样本剪切变换分解为低频和高频子带。利用这种变换的选择性和指向性特征,可提高我们所提系统的分类效率。从低频和高频子带中提取小剪切特征,然后使用 UNet-CNN 架构进行分类,从而识别脑胶质瘤脑图像中的肿瘤区域。我们使用公开可用的数据集(即脑肿瘤分割(BRATS)2019 和癌症基因组图谱(TCGA))验证了我们提出的胶质瘤肿瘤检测方法。我们的系统在 BRATS 2019 数据集上的平均分类率为 99.1%,在 TCGA 数据集上的平均分类率为 97.8%。此外,我们的系统还在 BRATS 2019 数据集上展示了显著的性能指标,包括 98.2% 的灵敏度、98.7% 的特异性、98.9% 的准确性、98.7% 的交集大于联合以及 98.5% 的圆盘相似系数。同样,在 TCGA 数据集上,我们的系统也达到了 97.7% 的灵敏度、98.2% 的特异性、98.7% 的准确性、98.6% 的交集大于联合以及 98.4% 的圆盘相似系数。与最先进方法的对比分析凸显了我们提出的胶质瘤脑肿瘤检测方法的功效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Computational Biology
Journal of Computational Biology 生物-计算机:跨学科应用
CiteScore
3.60
自引率
5.90%
发文量
113
审稿时长
6-12 weeks
期刊介绍: Journal of Computational Biology is the leading peer-reviewed journal in computational biology and bioinformatics, publishing in-depth statistical, mathematical, and computational analysis of methods, as well as their practical impact. Available only online, this is an essential journal for scientists and students who want to keep abreast of developments in bioinformatics. Journal of Computational Biology coverage includes: -Genomics -Mathematical modeling and simulation -Distributed and parallel biological computing -Designing biological databases -Pattern matching and pattern detection -Linking disparate databases and data -New tools for computational biology -Relational and object-oriented database technology for bioinformatics -Biological expert system design and use -Reasoning by analogy, hypothesis formation, and testing by machine -Management of biological databases
期刊最新文献
Advances in Estimating Level-1 Phylogenetic Networks from Unrooted SNPs. Adaptive Arithmetic Coding-Based Encoding Method Toward High-Density DNA Storage. The Statistics of Parametrized Syncmers in a Simple Mutation Process Without Spurious Matches. A Hybrid GNN Approach for Improved Molecular Property Prediction. From Policy to Prediction: Assessing Forecasting Accuracy in an Integrated Framework with Machine Learning and Disease Models.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1