Bacterial Apoptosis-Like Death through Accumulation of Reactive Oxygen Species by Quercetin in Escherichia coli.

IF 2.5 4区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Journal of microbiology and biotechnology Pub Date : 2024-07-28 Epub Date: 2024-06-14 DOI:10.4014/jmb.2403.03057
Min Seok Kwun, Dong Gun Lee
{"title":"Bacterial Apoptosis-Like Death through Accumulation of Reactive Oxygen Species by Quercetin in <i>Escherichia coli</i>.","authors":"Min Seok Kwun, Dong Gun Lee","doi":"10.4014/jmb.2403.03057","DOIUrl":null,"url":null,"abstract":"<p><p>The antimicrobial activity of the natural compounds from plant and food have well discovered since the interest on the beneficial effect of the natural compounds was risen. Quercetin, a flavonoid derived from vegetables, including onions, red leaf lettuces and cherries has been studied for diverse biological characteristics as anti-cancer and anti-microbial activities. The aim of current study is to investigate the specific antibacterial modes of action of quercetin against <i>Escherichia coli</i>. Quercetin decreased the <i>E. coli</i> cell viability and induced the severe damages (oxidative stress, DNA fragmentation) leading to cell death. Reactive oxygen species (ROS) generation was observed during the process, which we confirmed that oxidative stress was the key action of antibacterial activity of quercetin exerting its influence potently. Based on the results of Annexin V and Caspace FITC-VAD-FMK assay, the oxidative damage in <i>E. coli</i> has led to the bacterial apoptosis-like death in <i>E. coli</i>. To sum up, the contribution of ROS generation exerts crucial impact in antibacterial activity of quercetin.</p>","PeriodicalId":16481,"journal":{"name":"Journal of microbiology and biotechnology","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2024-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11294654/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of microbiology and biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.4014/jmb.2403.03057","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/14 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The antimicrobial activity of the natural compounds from plant and food have well discovered since the interest on the beneficial effect of the natural compounds was risen. Quercetin, a flavonoid derived from vegetables, including onions, red leaf lettuces and cherries has been studied for diverse biological characteristics as anti-cancer and anti-microbial activities. The aim of current study is to investigate the specific antibacterial modes of action of quercetin against Escherichia coli. Quercetin decreased the E. coli cell viability and induced the severe damages (oxidative stress, DNA fragmentation) leading to cell death. Reactive oxygen species (ROS) generation was observed during the process, which we confirmed that oxidative stress was the key action of antibacterial activity of quercetin exerting its influence potently. Based on the results of Annexin V and Caspace FITC-VAD-FMK assay, the oxidative damage in E. coli has led to the bacterial apoptosis-like death in E. coli. To sum up, the contribution of ROS generation exerts crucial impact in antibacterial activity of quercetin.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
槲皮素在大肠杆菌中通过积累活性氧导致细菌凋亡式死亡
自从人们开始关注天然化合物的有益作用以来,从植物和食物中提取的天然化合物的抗菌活性就被广泛发现。槲皮素是从洋葱、红叶莴苣和樱桃等蔬菜中提取的黄酮类化合物,其抗癌和抗微生物活性等多种生物特性已被研究。本研究旨在探讨槲皮素对大肠杆菌的特定抗菌作用模式。槲皮素降低了大肠杆菌细胞的活力,并诱发了严重的损伤(氧化应激、DNA 断裂),导致细胞死亡。在这一过程中,我们观察到了 ROS 的产生,这证实了氧化应激是槲皮素发挥其强效抗菌活性的关键作用。根据 Annexin V 和 Caspace FITC-VAD-FMK 检测的结果,大肠杆菌的氧化损伤导致了大肠杆菌的类凋亡。综上所述,ROS 的产生对槲皮素的抗菌活性有着至关重要的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of microbiology and biotechnology
Journal of microbiology and biotechnology BIOTECHNOLOGY & APPLIED MICROBIOLOGY-MICROBIOLOGY
CiteScore
5.50
自引率
3.60%
发文量
151
审稿时长
2 months
期刊介绍: The Journal of Microbiology and Biotechnology (JMB) is a monthly international journal devoted to the advancement and dissemination of scientific knowledge pertaining to microbiology, biotechnology, and related academic disciplines. It covers various scientific and technological aspects of Molecular and Cellular Microbiology, Environmental Microbiology and Biotechnology, Food Biotechnology, and Biotechnology and Bioengineering (subcategories are listed below). Launched in March 1991, the JMB is published by the Korean Society for Microbiology and Biotechnology (KMB) and distributed worldwide.
期刊最新文献
Loss in Pluripotency Markers in Mesenchymal Stem Cells upon Infection with Chlamydia trachomatis. Anti-Inflammatory Activity of Biotransformed Platycodon grandiflorum Root Extracts Containing 3-O-β-D-Glucopyranosyl Platycosides in LPS-Stimulated Alveolar Macrophages, NR8383 Cells. Melissa officinalis Regulates Lipopolysaccharide-Induced BV2 Microglial Activation via MAPK and Nrf2 Signaling. Synergistic Antibacterial Effect of Eisenia bicyclis Extracts in Combination with Antibiotics against Fish Pathogenic Bacteria. Probiotics and the Role of Dietary Substrates in Maintaining the Gut Health: Use of Live Microbes and Their Products for Anticancer Effects against Colorectal Cancer.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1