Superconducting Quantum Magnetometer Based on Flux Focusing Effect for High-Sensitivity Applications.

IF 3.4 3区 综合性期刊 Q2 CHEMISTRY, ANALYTICAL Sensors Pub Date : 2024-06-20 DOI:10.3390/s24123998
Antonio Vettoliere, Carmine Granata
{"title":"Superconducting Quantum Magnetometer Based on Flux Focusing Effect for High-Sensitivity Applications.","authors":"Antonio Vettoliere, Carmine Granata","doi":"10.3390/s24123998","DOIUrl":null,"url":null,"abstract":"<p><p>A superconducting quantum magnetometer for high-sensitivity applications has been developed by exploiting the flux focusing of the superconducting loop. Unlike conventional dc SQUID magnetometers that use a superconducting flux transformer or a multiloop design, in this case, a very simple design has been employed. It consists of a bare dc SQUID with a large washer-shaped superconducting ring in order to guarantee a magnetic field sensitivity B<sub>Φ</sub> less than one nT/Φ<sub>0</sub>. The degradation of the characteristics of the device due to an inevitable high value of the inductance parameter β<sub>L</sub> was successfully compensated by damping the inductance of the dc SQUID. The size of the magnetometer, coinciding with that of the washer, is 5 × 5 mm<sup>2</sup> and the spectral density of the magnetic field noise is 8 fT/√Hz with a low frequency noise knee of two Hz. The excellent performance of this simple magnetometer makes it usable for all high-sensitivity applications including magnetoencephalography.</p>","PeriodicalId":21698,"journal":{"name":"Sensors","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11207724/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.3390/s24123998","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

A superconducting quantum magnetometer for high-sensitivity applications has been developed by exploiting the flux focusing of the superconducting loop. Unlike conventional dc SQUID magnetometers that use a superconducting flux transformer or a multiloop design, in this case, a very simple design has been employed. It consists of a bare dc SQUID with a large washer-shaped superconducting ring in order to guarantee a magnetic field sensitivity BΦ less than one nT/Φ0. The degradation of the characteristics of the device due to an inevitable high value of the inductance parameter βL was successfully compensated by damping the inductance of the dc SQUID. The size of the magnetometer, coinciding with that of the washer, is 5 × 5 mm2 and the spectral density of the magnetic field noise is 8 fT/√Hz with a low frequency noise knee of two Hz. The excellent performance of this simple magnetometer makes it usable for all high-sensitivity applications including magnetoencephalography.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于磁通聚焦效应的超导量子磁力计,适用于高灵敏度应用。
通过利用超导回路的磁通聚焦,我们开发出了一种用于高灵敏度应用的超导量子磁强计。与使用超导磁通量变压器或多回路设计的传统直流 SQUID 磁强计不同,本研究采用了非常简单的设计。它由一个裸直流 SQUID 和一个大的波形超导环组成,以保证磁场灵敏度 BΦ 小于 1 nT/Φ0。通过对直流 SQUID 的电感进行阻尼,成功地补偿了因电感参数 βL 不可避免的高值而导致的设备特性下降。磁力计的尺寸与垫圈的尺寸一致,为 5 × 5 mm2,磁场噪声的频谱密度为 8 fT/√Hz,低频噪声膝点为 2 Hz。这种简单磁力计的卓越性能使其可用于包括脑磁图在内的所有高灵敏度应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Sensors
Sensors 工程技术-电化学
CiteScore
7.30
自引率
12.80%
发文量
8430
审稿时长
1.7 months
期刊介绍: Sensors (ISSN 1424-8220) provides an advanced forum for the science and technology of sensors and biosensors. It publishes reviews (including comprehensive reviews on the complete sensors products), regular research papers and short notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.
期刊最新文献
Blockchain 6G-Based Wireless Network Security Management with Optimization Using Machine Learning Techniques. A Comprehensive Review on the Viscoelastic Parameters Used for Engineering Materials, Including Soft Materials, and the Relationships between Different Damping Parameters. A Mixed Approach for Clock Synchronization in Distributed Data Acquisition Systems. A Novel Topology of a 3 × 3 Series Phased Array Antenna with Aperture-Coupled Feeding. A Photoelectrochemical Biosensor Mediated by CRISPR/Cas13a for Direct and Specific Detection of MiRNA-21.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1