Robust Multi-Modal Image Registration for Image Fusion Enhancement in Infrastructure Inspection.

IF 3.4 3区 综合性期刊 Q2 CHEMISTRY, ANALYTICAL Sensors Pub Date : 2024-06-20 DOI:10.3390/s24123994
Sara Shahsavarani, Fernando Lopez, Clemente Ibarra-Castanedo, Xavier P V Maldague
{"title":"Robust Multi-Modal Image Registration for Image Fusion Enhancement in Infrastructure Inspection.","authors":"Sara Shahsavarani, Fernando Lopez, Clemente Ibarra-Castanedo, Xavier P V Maldague","doi":"10.3390/s24123994","DOIUrl":null,"url":null,"abstract":"<p><p>Efficient multi-modal image fusion plays an important role in the non-destructive evaluation (NDE) of infrastructures, where an essential challenge is the precise visualizing of defects. While automatic defect detection represents a significant advancement, the determination of the precise location of both surface and subsurface defects simultaneously is crucial. Hence, visible and infrared data fusion strategies are essential for acquiring comprehensive and complementary information to detect defects across vast structures. This paper proposes an infrared and visible image registration method based on Euclidean evaluation together with a trade-off between key-point threshold and non-maximum suppression. Moreover, we employ a multi-modal fusion strategy to investigate the robustness of our image registration results.</p>","PeriodicalId":21698,"journal":{"name":"Sensors","volume":"24 12","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11207383/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.3390/s24123994","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Efficient multi-modal image fusion plays an important role in the non-destructive evaluation (NDE) of infrastructures, where an essential challenge is the precise visualizing of defects. While automatic defect detection represents a significant advancement, the determination of the precise location of both surface and subsurface defects simultaneously is crucial. Hence, visible and infrared data fusion strategies are essential for acquiring comprehensive and complementary information to detect defects across vast structures. This paper proposes an infrared and visible image registration method based on Euclidean evaluation together with a trade-off between key-point threshold and non-maximum suppression. Moreover, we employ a multi-modal fusion strategy to investigate the robustness of our image registration results.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于基础设施检测中图像融合增强的稳健多模态图像注册。
高效的多模态图像融合在基础设施的无损评估(NDE)中发挥着重要作用,其中一个重要的挑战是如何精确地将缺陷可视化。虽然自动缺陷检测是一项重大进步,但同时确定表面和地下缺陷的精确位置至关重要。因此,可见光和红外数据融合策略对于获取全面、互补的信息以检测巨大结构中的缺陷至关重要。本文提出了一种基于欧氏评估的红外和可见光图像配准方法,并在关键点阈值和非最大抑制之间进行了权衡。此外,我们还采用了多模态融合策略来研究图像配准结果的稳健性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Sensors
Sensors 工程技术-电化学
CiteScore
7.30
自引率
12.80%
发文量
8430
审稿时长
1.7 months
期刊介绍: Sensors (ISSN 1424-8220) provides an advanced forum for the science and technology of sensors and biosensors. It publishes reviews (including comprehensive reviews on the complete sensors products), regular research papers and short notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.
期刊最新文献
RETRACTED: Bas et al. Embedded Sensors with 3D Printing Technology: Review. Sensors 2024, 24, 1955. RETRACTED: Qian et al. Information System Model and Key Technologies of High-Definition Maps in Autonomous Driving Scenarios. Sensors 2024, 24, 4115. Exploring Components, Sensors, and Techniques for Cancer Detection via eNose Technology: A Systematic Review. 3D-BCLAM: A Lightweight Neurodynamic Model for Assessing Student Learning Effectiveness. Addressing the Return Visit Challenge in Autonomous Flying Ad Hoc Networks Linked to a Central Station.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1