Self-Powered Acceleration Sensor for Distance Prediction via Triboelectrification.

IF 3.4 3区 综合性期刊 Q2 CHEMISTRY, ANALYTICAL Sensors Pub Date : 2024-06-20 DOI:10.3390/s24124021
Zhengbing Ding, Dinh Cong Nguyen, Hakjeong Kim, Xing Wang, Kyungwho Choi, Jihae Lee, Dukhyun Choi
{"title":"Self-Powered Acceleration Sensor for Distance Prediction via Triboelectrification.","authors":"Zhengbing Ding, Dinh Cong Nguyen, Hakjeong Kim, Xing Wang, Kyungwho Choi, Jihae Lee, Dukhyun Choi","doi":"10.3390/s24124021","DOIUrl":null,"url":null,"abstract":"<p><p>Accurately predicting the distance an object will travel to its destination is very important in various sports. Acceleration sensors as a means of real-time monitoring are gaining increasing attention in sports. Due to the low energy output and power density of Triboelectric Nanogenerators (TENGs), recent efforts have focused on developing various acceleration sensors. However, these sensors suffer from significant drawbacks, including large size, high complexity, high power input requirements, and high cost. Here, we described a portable and cost-effective real-time refreshable strategy design comprising a series of individually addressable and controllable units based on TENGs embedded in a flexible substrate. This results in a highly sensitive, low-cost, and self-powered acceleration sensor. Putting, which accounts for nearly half of all strokes played, is obviously an important component of the golf game. The developed acceleration sensor has an accuracy controlled within 5%. The initial velocity and acceleration of the forward movement of a rolling golf ball after it is hit by a putter can be displayed, and the stopping distance is quickly calculated and predicted in about 7 s. This research demonstrates the application of the portable TENG-based acceleration sensor while paving the way for designing portable, cost-effective, scalable, and harmless ubiquitous self-powered acceleration sensors.</p>","PeriodicalId":21698,"journal":{"name":"Sensors","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11209619/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.3390/s24124021","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Accurately predicting the distance an object will travel to its destination is very important in various sports. Acceleration sensors as a means of real-time monitoring are gaining increasing attention in sports. Due to the low energy output and power density of Triboelectric Nanogenerators (TENGs), recent efforts have focused on developing various acceleration sensors. However, these sensors suffer from significant drawbacks, including large size, high complexity, high power input requirements, and high cost. Here, we described a portable and cost-effective real-time refreshable strategy design comprising a series of individually addressable and controllable units based on TENGs embedded in a flexible substrate. This results in a highly sensitive, low-cost, and self-powered acceleration sensor. Putting, which accounts for nearly half of all strokes played, is obviously an important component of the golf game. The developed acceleration sensor has an accuracy controlled within 5%. The initial velocity and acceleration of the forward movement of a rolling golf ball after it is hit by a putter can be displayed, and the stopping distance is quickly calculated and predicted in about 7 s. This research demonstrates the application of the portable TENG-based acceleration sensor while paving the way for designing portable, cost-effective, scalable, and harmless ubiquitous self-powered acceleration sensors.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过三电化实现距离预测的自供电加速度传感器
在各种体育运动中,准确预测物体到达目的地的距离非常重要。加速度传感器作为一种实时监测手段,在体育运动中越来越受到关注。由于三电纳米发电机(TENGs)的能量输出和功率密度较低,最近的工作重点是开发各种加速度传感器。然而,这些传感器都存在明显的缺点,包括体积大、复杂性高、输入功率要求高和成本高。在这里,我们介绍了一种便携式、高性价比的实时刷新策略设计,它由一系列基于 TENG 的可单独寻址和可控单元组成,并嵌入到柔性基板中。这就产生了一种高灵敏度、低成本和自供电的加速度传感器。推杆占所有击球次数的近一半,显然是高尔夫比赛的重要组成部分。所开发的加速度传感器的精度控制在 5%以内。这项研究展示了基于 TENG 的便携式加速度传感器的应用,同时也为设计便携式、高性价比、可扩展和无害的无处不在的自供电加速度传感器铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Sensors
Sensors 工程技术-电化学
CiteScore
7.30
自引率
12.80%
发文量
8430
审稿时长
1.7 months
期刊介绍: Sensors (ISSN 1424-8220) provides an advanced forum for the science and technology of sensors and biosensors. It publishes reviews (including comprehensive reviews on the complete sensors products), regular research papers and short notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.
期刊最新文献
Blockchain 6G-Based Wireless Network Security Management with Optimization Using Machine Learning Techniques. A Comprehensive Review on the Viscoelastic Parameters Used for Engineering Materials, Including Soft Materials, and the Relationships between Different Damping Parameters. A Mixed Approach for Clock Synchronization in Distributed Data Acquisition Systems. A Novel Topology of a 3 × 3 Series Phased Array Antenna with Aperture-Coupled Feeding. A Photoelectrochemical Biosensor Mediated by CRISPR/Cas13a for Direct and Specific Detection of MiRNA-21.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1