Christopher J. Trevelyan , Amanda D.V. MacCannell , Leander Stewart , Theodora Tarousa , Hannah A. Taylor , Michael Murray , Sumia A. Bageghni , Karen E. Hemmings , Mark J. Drinkhill , Lee D. Roberts , Andrew J. Smith , Karen E. Porter , Karen A. Forbes , Neil A. Turner
{"title":"MiR-214–3p regulates Piezo1, lysyl oxidases and mitochondrial function in human cardiac fibroblasts","authors":"Christopher J. Trevelyan , Amanda D.V. MacCannell , Leander Stewart , Theodora Tarousa , Hannah A. Taylor , Michael Murray , Sumia A. Bageghni , Karen E. Hemmings , Mark J. Drinkhill , Lee D. Roberts , Andrew J. Smith , Karen E. Porter , Karen A. Forbes , Neil A. Turner","doi":"10.1016/j.matbio.2024.06.005","DOIUrl":null,"url":null,"abstract":"<div><p>Cardiac fibroblasts are pivotal regulators of cardiac homeostasis and are essential in the repair of the heart after myocardial infarction (MI), but their function can also become dysregulated, leading to adverse cardiac remodelling involving both fibrosis and hypertrophy. MicroRNAs (miRNAs) are noncoding RNAs that target mRNAs to prevent their translation, with specific miRNAs showing differential expression and regulation in cardiovascular disease. Here, we show that miR-214–3p is enriched in the fibroblast fraction of the murine heart, and its levels are increased with cardiac remodelling associated with heart failure, or in the acute phase after experimental MI. Tandem mass tagging proteomics and in-silico network analyses were used to explore protein targets regulated by miR-214–3p in cultured human cardiac fibroblasts from multiple donors. Overexpression of miR-214–3p by miRNA mimics resulted in decreased expression and activity of the Piezo1 mechanosensitive cation channel, increased expression of the entire lysyl oxidase (LOX) family of collagen cross-linking enzymes, and decreased expression of an array of mitochondrial proteins, including mitofusin-2 (MFN2), resulting in mitochondrial dysfunction, as measured by citrate synthase and Seahorse mitochondrial respiration assays. Collectively, our data suggest that miR-214–3p is an important regulator of cardiac fibroblast phenotypes and functions key to cardiac remodelling, and that this miRNA represents a potential therapeutic target in cardiovascular disease.</p></div>","PeriodicalId":49851,"journal":{"name":"Matrix Biology","volume":"132 ","pages":"Pages 34-46"},"PeriodicalIF":4.5000,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0945053X24000891/pdfft?md5=dedfa241d4aff0fe56908d1113a212b1&pid=1-s2.0-S0945053X24000891-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Matrix Biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0945053X24000891","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Cardiac fibroblasts are pivotal regulators of cardiac homeostasis and are essential in the repair of the heart after myocardial infarction (MI), but their function can also become dysregulated, leading to adverse cardiac remodelling involving both fibrosis and hypertrophy. MicroRNAs (miRNAs) are noncoding RNAs that target mRNAs to prevent their translation, with specific miRNAs showing differential expression and regulation in cardiovascular disease. Here, we show that miR-214–3p is enriched in the fibroblast fraction of the murine heart, and its levels are increased with cardiac remodelling associated with heart failure, or in the acute phase after experimental MI. Tandem mass tagging proteomics and in-silico network analyses were used to explore protein targets regulated by miR-214–3p in cultured human cardiac fibroblasts from multiple donors. Overexpression of miR-214–3p by miRNA mimics resulted in decreased expression and activity of the Piezo1 mechanosensitive cation channel, increased expression of the entire lysyl oxidase (LOX) family of collagen cross-linking enzymes, and decreased expression of an array of mitochondrial proteins, including mitofusin-2 (MFN2), resulting in mitochondrial dysfunction, as measured by citrate synthase and Seahorse mitochondrial respiration assays. Collectively, our data suggest that miR-214–3p is an important regulator of cardiac fibroblast phenotypes and functions key to cardiac remodelling, and that this miRNA represents a potential therapeutic target in cardiovascular disease.
期刊介绍:
Matrix Biology (established in 1980 as Collagen and Related Research) is a cutting-edge journal that is devoted to publishing the latest results in matrix biology research. We welcome articles that reside at the nexus of understanding the cellular and molecular pathophysiology of the extracellular matrix. Matrix Biology focusses on solving elusive questions, opening new avenues of thought and discovery, and challenging longstanding biological paradigms.