Maria Bauza, Antonia Bronars, Yifan Hou, Ian Taylor, Nikhil Chavan-Dafle, Alberto Rodriguez
{"title":"SimPLE, a visuotactile method learned in simulation to precisely pick, localize, regrasp, and place objects","authors":"Maria Bauza, Antonia Bronars, Yifan Hou, Ian Taylor, Nikhil Chavan-Dafle, Alberto Rodriguez","doi":"10.1126/scirobotics.adi8808","DOIUrl":null,"url":null,"abstract":"<div >Existing robotic systems have a tension between generality and precision. Deployed solutions for robotic manipulation tend to fall into the paradigm of one robot solving a single task, lacking “precise generalization,” or the ability to solve many tasks without compromising on precision. This paper explores solutions for precise and general pick and place. In precise pick and place, or kitting, the robot transforms an unstructured arrangement of objects into an organized arrangement, which can facilitate further manipulation. We propose SimPLE (Simulation to Pick Localize and placE) as a solution to precise pick and place. SimPLE learns to pick, regrasp, and place objects given the object’s computer-aided design model and no prior experience. We developed three main components: task-aware grasping, visuotactile perception, and regrasp planning. Task-aware grasping computes affordances of grasps that are stable, observable, and favorable to placing. The visuotactile perception model relies on matching real observations against a set of simulated ones through supervised learning to estimate a distribution of likely object poses. Last, we computed a multistep pick-and-place plan by solving a shortest-path problem on a graph of hand-to-hand regrasps. On a dual-arm robot equipped with visuotactile sensing, SimPLE demonstrated pick and place of 15 diverse objects. The objects spanned a wide range of shapes, and SimPLE achieved successful placements into structured arrangements with 1-mm clearance more than 90% of the time for six objects and more than 80% of the time for 11 objects.</div>","PeriodicalId":56029,"journal":{"name":"Science Robotics","volume":"9 91","pages":""},"PeriodicalIF":26.1000,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Robotics","FirstCategoryId":"94","ListUrlMain":"https://www.science.org/doi/10.1126/scirobotics.adi8808","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0
Abstract
Existing robotic systems have a tension between generality and precision. Deployed solutions for robotic manipulation tend to fall into the paradigm of one robot solving a single task, lacking “precise generalization,” or the ability to solve many tasks without compromising on precision. This paper explores solutions for precise and general pick and place. In precise pick and place, or kitting, the robot transforms an unstructured arrangement of objects into an organized arrangement, which can facilitate further manipulation. We propose SimPLE (Simulation to Pick Localize and placE) as a solution to precise pick and place. SimPLE learns to pick, regrasp, and place objects given the object’s computer-aided design model and no prior experience. We developed three main components: task-aware grasping, visuotactile perception, and regrasp planning. Task-aware grasping computes affordances of grasps that are stable, observable, and favorable to placing. The visuotactile perception model relies on matching real observations against a set of simulated ones through supervised learning to estimate a distribution of likely object poses. Last, we computed a multistep pick-and-place plan by solving a shortest-path problem on a graph of hand-to-hand regrasps. On a dual-arm robot equipped with visuotactile sensing, SimPLE demonstrated pick and place of 15 diverse objects. The objects spanned a wide range of shapes, and SimPLE achieved successful placements into structured arrangements with 1-mm clearance more than 90% of the time for six objects and more than 80% of the time for 11 objects.
期刊介绍:
Science Robotics publishes original, peer-reviewed, science- or engineering-based research articles that advance the field of robotics. The journal also features editor-commissioned Reviews. An international team of academic editors holds Science Robotics articles to the same high-quality standard that is the hallmark of the Science family of journals.
Sub-topics include: actuators, advanced materials, artificial Intelligence, autonomous vehicles, bio-inspired design, exoskeletons, fabrication, field robotics, human-robot interaction, humanoids, industrial robotics, kinematics, machine learning, material science, medical technology, motion planning and control, micro- and nano-robotics, multi-robot control, sensors, service robotics, social and ethical issues, soft robotics, and space, planetary and undersea exploration.