Optical parameters of healthy and tumor breast tissues in mice

IF 2 3区 物理与天体物理 Q3 BIOCHEMICAL RESEARCH METHODS Journal of Biophotonics Pub Date : 2024-06-26 DOI:10.1002/jbio.202400123
Elina A. Genina, Ekaterina N. Lazareva, Yuri I. Surkov, Isabella A. Serebryakova, Natalya A. Shushunova
{"title":"Optical parameters of healthy and tumor breast tissues in mice","authors":"Elina A. Genina,&nbsp;Ekaterina N. Lazareva,&nbsp;Yuri I. Surkov,&nbsp;Isabella A. Serebryakova,&nbsp;Natalya A. Shushunova","doi":"10.1002/jbio.202400123","DOIUrl":null,"url":null,"abstract":"<p>Knowledge of the optical parameters of tumors is important for choosing the correct laser treatment parameters. In this paper, optical properties and refraction indices of breast tissue in healthy mice and a 4T1 model mimicking human breast cancer have been measured. A significant decrease in both the scattering and refractive index of tumor tissue has been observed. The change in tissue morphology has induced the change in the slope of the scattering spectrum. Thus, the light penetration depth into tumor has increased by almost 1.5–2 times in the near infrared “optical windows.” Raman spectra have shown lower lipid content and higher protein content in tumor. The difference in the optical parameters of the tissues under study makes it possible to reliably differentiate them. The results may be useful for modeling the distribution of laser radiation in healthy tissues and cancers for deriving optimal irradiation conditions in photodynamic therapy.</p>","PeriodicalId":184,"journal":{"name":"Journal of Biophotonics","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biophotonics","FirstCategoryId":"101","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jbio.202400123","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Knowledge of the optical parameters of tumors is important for choosing the correct laser treatment parameters. In this paper, optical properties and refraction indices of breast tissue in healthy mice and a 4T1 model mimicking human breast cancer have been measured. A significant decrease in both the scattering and refractive index of tumor tissue has been observed. The change in tissue morphology has induced the change in the slope of the scattering spectrum. Thus, the light penetration depth into tumor has increased by almost 1.5–2 times in the near infrared “optical windows.” Raman spectra have shown lower lipid content and higher protein content in tumor. The difference in the optical parameters of the tissues under study makes it possible to reliably differentiate them. The results may be useful for modeling the distribution of laser radiation in healthy tissues and cancers for deriving optimal irradiation conditions in photodynamic therapy.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
小鼠健康和肿瘤乳腺组织的光学参数。
了解肿瘤的光学参数对于选择正确的激光治疗参数非常重要。本文测量了健康小鼠和模拟人类乳腺癌的 4T1 模型乳腺组织的光学特性和折射率。观察到肿瘤组织的散射和折射率都明显下降。组织形态的变化引起了散射光谱斜率的变化。因此,在近红外 "光学窗口 "中,光对肿瘤的穿透深度增加了近 1.5-2 倍。拉曼光谱显示肿瘤中脂质含量较低,蛋白质含量较高。由于所研究组织的光学参数不同,因此可以对它们进行可靠的区分。这些结果可能有助于模拟激光辐射在健康组织和癌症中的分布,从而得出光动力疗法的最佳照射条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Biophotonics
Journal of Biophotonics 生物-生化研究方法
CiteScore
5.70
自引率
7.10%
发文量
248
审稿时长
1 months
期刊介绍: The first international journal dedicated to publishing reviews and original articles from this exciting field, the Journal of Biophotonics covers the broad range of research on interactions between light and biological material. The journal offers a platform where the physicist communicates with the biologist and where the clinical practitioner learns about the latest tools for the diagnosis of diseases. As such, the journal is highly interdisciplinary, publishing cutting edge research in the fields of life sciences, medicine, physics, chemistry, and engineering. The coverage extends from fundamental research to specific developments, while also including the latest applications.
期刊最新文献
Fast Multiphoton Microscopic Imaging Joint Image Super‐Resolution for Automated Gleason Grading of Prostate Cancers Front Cover Issue Information Sensitivity of Frequency Domain Near Infrared Spectroscopy for Neurovascular Structure Detection in Biotissue Volume: Numerical Modeling Results Downconversion Master Slave OCT With a Bidirectional Sweeping Laser
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1