{"title":"Development of a rapid and efficient system for CR genes identification based on hairy root transformation in Brassicaceae","authors":"Wenlin Yu, Lu Yang, Yuanyuan Xiang, Rongde Li, Xueqing Zhou, Longcai Gan, Xianyu Xiang, Yunyun Zhang, Lei Yuan, Yanqing Luo, Genze Li, Youning Wang, Yinhua Chen, Peng Chen, Chunyu Zhang","doi":"10.1016/j.hpj.2024.05.002","DOIUrl":null,"url":null,"abstract":"Many economically important crops and vegetables belonging to the cruciferous family are heavily endangered by clubroot disease caused by infection. Breeding of clubroot resistant cultivars based on mapping and cloning of resistant genes is commonly regarded as the most cost-effective and efficient way to fight against this disease. The traditional way of R gene functional validation requires stable transformation that is both time- and labor-consuming. In this study, a rapid and efficient hairy-root transgenic protocol mediated by was developed. The transformation positive rate was over 80% in showed by GUS reporter gene and this transformation only took 1/6 of the time compared with stable transformation. The system was applicable to different varieties and other cruciferous crops including and . In particular, two known CR genes, and were used respectively, as example to show that the system works well for CR gene study combined with subsequent infection in . Most importantly, it works both in over-expression that led to disease resistance, as well as in RNAi which led to disease susceptible phenotype. Therefore, this system can be used in batch-wise identification of CR genes, and also offered the possibility of manipulating key genes within the genome that could improve our knowledge on host–pathogen interaction.","PeriodicalId":13178,"journal":{"name":"Horticultural Plant Journal","volume":"5 1","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Horticultural Plant Journal","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1016/j.hpj.2024.05.002","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HORTICULTURE","Score":null,"Total":0}
引用次数: 0
Abstract
Many economically important crops and vegetables belonging to the cruciferous family are heavily endangered by clubroot disease caused by infection. Breeding of clubroot resistant cultivars based on mapping and cloning of resistant genes is commonly regarded as the most cost-effective and efficient way to fight against this disease. The traditional way of R gene functional validation requires stable transformation that is both time- and labor-consuming. In this study, a rapid and efficient hairy-root transgenic protocol mediated by was developed. The transformation positive rate was over 80% in showed by GUS reporter gene and this transformation only took 1/6 of the time compared with stable transformation. The system was applicable to different varieties and other cruciferous crops including and . In particular, two known CR genes, and were used respectively, as example to show that the system works well for CR gene study combined with subsequent infection in . Most importantly, it works both in over-expression that led to disease resistance, as well as in RNAi which led to disease susceptible phenotype. Therefore, this system can be used in batch-wise identification of CR genes, and also offered the possibility of manipulating key genes within the genome that could improve our knowledge on host–pathogen interaction.
期刊介绍:
Horticultural Plant Journal (HPJ) is an OPEN ACCESS international journal. HPJ publishes research related to all horticultural plants, including fruits, vegetables, ornamental plants, tea plants, and medicinal plants, etc. The journal covers all aspects of horticultural crop sciences, including germplasm resources, genetics and breeding, tillage and cultivation, physiology and biochemistry, ecology, genomics, biotechnology, plant protection, postharvest processing, etc. Article types include Original research papers, Reviews, and Short communications.