Phylo2Vec: a vector representation for binary trees

IF 6.1 1区 生物学 Q1 EVOLUTIONARY BIOLOGY Systematic Biology Pub Date : 2024-06-26 DOI:10.1093/sysbio/syae030
Matthew J Penn, Neil Scheidwasser, Mark P Khurana, David A Duchêne, Christl A Donnelly, Samir Bhatt
{"title":"Phylo2Vec: a vector representation for binary trees","authors":"Matthew J Penn, Neil Scheidwasser, Mark P Khurana, David A Duchêne, Christl A Donnelly, Samir Bhatt","doi":"10.1093/sysbio/syae030","DOIUrl":null,"url":null,"abstract":"Binary phylogenetic trees inferred from biological data are central to understanding the shared history among evolutionary units. However, inferring the placement of latent nodes in a tree is computationally expensive. State-of-the-art methods rely on carefully designed heuristics for tree search, using different data structures for easy manipulation (e.g., classes in object-oriented programming languages) and readable representation of trees (e.g., Newick-format strings). Here, we present Phylo2Vec, a parsimonious encoding for phylogenetic trees that serves as a unified approach for both manipulating and representing phylogenetic trees. Phylo2Vec maps any binary tree with n leaves to a unique integer vector of length n − 1. The advantages of Phylo2Vec are fourfold: i) fast tree sampling, (ii) compressed tree representation compared to a Newick string, iii) quick and unambiguous verification if two binary trees are identical topologically, and iv) systematic ability to traverse tree space in very large or small jumps. As a proof of concept, we use Phylo2Vec for maximum likelihood inference on five real-world datasets and show that a simple hill-climbing-based optimisation scheme can efficiently traverse the vastness of tree space from a random to an optimal tree.","PeriodicalId":22120,"journal":{"name":"Systematic Biology","volume":"24 1","pages":""},"PeriodicalIF":6.1000,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Systematic Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/sysbio/syae030","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"EVOLUTIONARY BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Binary phylogenetic trees inferred from biological data are central to understanding the shared history among evolutionary units. However, inferring the placement of latent nodes in a tree is computationally expensive. State-of-the-art methods rely on carefully designed heuristics for tree search, using different data structures for easy manipulation (e.g., classes in object-oriented programming languages) and readable representation of trees (e.g., Newick-format strings). Here, we present Phylo2Vec, a parsimonious encoding for phylogenetic trees that serves as a unified approach for both manipulating and representing phylogenetic trees. Phylo2Vec maps any binary tree with n leaves to a unique integer vector of length n − 1. The advantages of Phylo2Vec are fourfold: i) fast tree sampling, (ii) compressed tree representation compared to a Newick string, iii) quick and unambiguous verification if two binary trees are identical topologically, and iv) systematic ability to traverse tree space in very large or small jumps. As a proof of concept, we use Phylo2Vec for maximum likelihood inference on five real-world datasets and show that a simple hill-climbing-based optimisation scheme can efficiently traverse the vastness of tree space from a random to an optimal tree.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Phylo2Vec:二叉树的向量表示法
从生物数据中推断出的二元系统发生树是了解进化单元之间共同历史的核心。然而,推断树中潜在节点的位置需要耗费大量计算资源。最先进的方法依赖于精心设计的启发式树搜索,使用不同的数据结构来实现树的简便操作(如面向对象编程语言中的类)和可读性表示(如纽维克格式字符串)。在这里,我们介绍 Phylo2Vec,它是一种用于系统发生树的简易编码,是操作和表示系统发生树的统一方法。Phylo2Vec 可将任何具有 n 个叶子的二叉树映射为长度为 n - 1 的唯一整数向量。Phylo2Vec 有四方面的优势:i) 快速树采样;ii) 与纽尼克字符串相比,压缩树表示法;iii) 快速、明确地验证两棵二叉树在拓扑上是否相同;iv) 以非常大或非常小的跳跃系统性地穿越树空间。作为概念验证,我们使用 Phylo2Vec 对五个实际数据集进行了最大似然推断,结果表明一个简单的基于爬山的优化方案可以高效地穿越浩瀚的树空间,从随机树到最优树。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Systematic Biology
Systematic Biology 生物-进化生物学
CiteScore
13.00
自引率
7.70%
发文量
70
审稿时长
6-12 weeks
期刊介绍: Systematic Biology is the bimonthly journal of the Society of Systematic Biologists. Papers for the journal are original contributions to the theory, principles, and methods of systematics as well as phylogeny, evolution, morphology, biogeography, paleontology, genetics, and the classification of all living things. A Points of View section offers a forum for discussion, while book reviews and announcements of general interest are also featured.
期刊最新文献
A Double-edged Sword: Evolutionary Novelty along Deep-time Diversity Oscillation in An Iconic Group of Predatory Insects (Neuroptera: Mantispoidea) Are Modern Cryptic Species Detectable in the Fossil Record? A Case Study on Agamid Lizards. Bayesian Selection of Relaxed-clock Models: Distinguishing Between Independent and Autocorrelated Rates. Testing relationships between multiple regional features and biogeographic processes of speciation, extinction, and dispersal Robustness of Divergence Time Estimation Despite Gene Tree Estimation Error: A Case Study of Fireflies (Coleoptera: Lampyridae)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1