Eric A. Ray, Fred L. Moore, Hella Garny, Eric J. Hintsa, Bradley D. Hall, Geoff S. Dutton, David Nance, James W. Elkins, Steven C. Wofsy, Jasna Pittman, Bruce Daube, Bianca C. Baier, Jianghanyang Li, Colm Sweeney
{"title":"Age of air from in situ trace gas measurements: Insights from a new technique","authors":"Eric A. Ray, Fred L. Moore, Hella Garny, Eric J. Hintsa, Bradley D. Hall, Geoff S. Dutton, David Nance, James W. Elkins, Steven C. Wofsy, Jasna Pittman, Bruce Daube, Bianca C. Baier, Jianghanyang Li, Colm Sweeney","doi":"10.5194/egusphere-2024-1887","DOIUrl":null,"url":null,"abstract":"<strong>Abstract.</strong> The age of air is an important transport diagnostic that can be derived from trace gas measurements and compared to global chemistry climate model output. We describe a new technique to calculate the age of air, measuring transport times from the Earth’s surface to any location in the atmosphere based on simultaneous <em>in situ</em> measurements of multiple key long-lived trace gases. The primary benefits of this new technique include (1) optimized ages of air consistent with simultaneously measured SF<sub>6</sub> and CO<sub>2</sub>, (2) age of air from the upper troposphere through the stratosphere, (3) estimates of the second moment of age spectra that have not been well constrained from measurements and (4) flexibility to be used with measurements across multiple instruments, platforms and decades. We demonstrate the technique on aircraft and balloon measurements from the 1990s, the last period of extensive stratospheric <em>in situ</em> sampling, and several recent missions from the 2020s, and compare the results with previously published and modeled values.","PeriodicalId":8611,"journal":{"name":"Atmospheric Chemistry and Physics","volume":"59 1","pages":""},"PeriodicalIF":5.2000,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atmospheric Chemistry and Physics","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.5194/egusphere-2024-1887","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract. The age of air is an important transport diagnostic that can be derived from trace gas measurements and compared to global chemistry climate model output. We describe a new technique to calculate the age of air, measuring transport times from the Earth’s surface to any location in the atmosphere based on simultaneous in situ measurements of multiple key long-lived trace gases. The primary benefits of this new technique include (1) optimized ages of air consistent with simultaneously measured SF6 and CO2, (2) age of air from the upper troposphere through the stratosphere, (3) estimates of the second moment of age spectra that have not been well constrained from measurements and (4) flexibility to be used with measurements across multiple instruments, platforms and decades. We demonstrate the technique on aircraft and balloon measurements from the 1990s, the last period of extensive stratospheric in situ sampling, and several recent missions from the 2020s, and compare the results with previously published and modeled values.
期刊介绍:
Atmospheric Chemistry and Physics (ACP) is a not-for-profit international scientific journal dedicated to the publication and public discussion of high-quality studies investigating the Earth''s atmosphere and the underlying chemical and physical processes. It covers the altitude range from the land and ocean surface up to the turbopause, including the troposphere, stratosphere, and mesosphere.
The main subject areas comprise atmospheric modelling, field measurements, remote sensing, and laboratory studies of gases, aerosols, clouds and precipitation, isotopes, radiation, dynamics, biosphere interactions, and hydrosphere interactions. The journal scope is focused on studies with general implications for atmospheric science rather than investigations that are primarily of local or technical interest.