Secondary Coordination Sphere Engineering of Single‐Sn‐Atom catalyst via P Doping for Efficient CO2 Electroreduction

IF 24.4 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Advanced Energy Materials Pub Date : 2024-06-28 DOI:10.1002/aenm.202401448
Caizhen Yue, Xiaobo Yang, Xiong Zhang, Shifu Wang, Wei Xu, Ruru Chen, Jiuyi Wang, Jie Yin, Yanqiang Huang, Xuning Li
{"title":"Secondary Coordination Sphere Engineering of Single‐Sn‐Atom catalyst via P Doping for Efficient CO2 Electroreduction","authors":"Caizhen Yue, Xiaobo Yang, Xiong Zhang, Shifu Wang, Wei Xu, Ruru Chen, Jiuyi Wang, Jie Yin, Yanqiang Huang, Xuning Li","doi":"10.1002/aenm.202401448","DOIUrl":null,"url":null,"abstract":"The regulation of the local microenvironment in the single‐atom catalysts affords a scheme for accelerating the overall reaction kinetics of electrochemical CO<jats:sub>2</jats:sub> reduction reaction (CO<jats:sub>2</jats:sub>RR), which is of vital importance but remains challenging. Herein, a carbon nanotube‐supported single‐Sn‐atom catalyst (P‐SnN<jats:sub>4</jats:sub>‐CNT) is developed by a modified pyrolysis procedure with P‐doping into the second coordination shell of SnN<jats:sub>4</jats:sub> moiety to modulate the electron structure of metal Sn center. The resulting P‐SnN<jats:sub>4</jats:sub>‐CNT delivered a high CO partial current density of −380 mA cm<jats:sup>−2</jats:sup> with Faradaic efficiency (FE) of CO above 90% across a wide range of −0.5 to −0.8 V versus reversible hydrogen electrode (vs RHE), along with optimal FE (CO) of ≈98.5% at −0.6 V versus RHE in a flow cell. Moreover, P‐SnN<jats:sub>4</jats:sub>‐CNT achieved an extremely high turnover frequency of 126 471 h<jats:sup>−1</jats:sup> with an applied potential of −0.8 V versus RHE, which ranks the best among the reported M─N─C catalysts for electrocatalytic CO<jats:sub>2</jats:sub> reduction. The combination of in situ characterization techniques and density functional theory calculation revealed that the doping of P atoms benefited the activation and hydrogenation steps of CO<jats:sub>2</jats:sub> and promoted the Sn<jats:sup>4+</jats:sup> reduction to Sn<jats:sup>2+</jats:sup> during the reaction process, where Sn<jats:sup>2+</jats:sup> is identified as the active site for the CO generation. The work provides a clear mechanistic insight for both electron structure optimization and identification of active sites by local microenvironment regulation of single‐Sn‐atom, which shall pave a way for the exploitation of other M─N─C catalysts with high CO<jats:sub>2</jats:sub>RR performance.","PeriodicalId":111,"journal":{"name":"Advanced Energy Materials","volume":null,"pages":null},"PeriodicalIF":24.4000,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Energy Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/aenm.202401448","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The regulation of the local microenvironment in the single‐atom catalysts affords a scheme for accelerating the overall reaction kinetics of electrochemical CO2 reduction reaction (CO2RR), which is of vital importance but remains challenging. Herein, a carbon nanotube‐supported single‐Sn‐atom catalyst (P‐SnN4‐CNT) is developed by a modified pyrolysis procedure with P‐doping into the second coordination shell of SnN4 moiety to modulate the electron structure of metal Sn center. The resulting P‐SnN4‐CNT delivered a high CO partial current density of −380 mA cm−2 with Faradaic efficiency (FE) of CO above 90% across a wide range of −0.5 to −0.8 V versus reversible hydrogen electrode (vs RHE), along with optimal FE (CO) of ≈98.5% at −0.6 V versus RHE in a flow cell. Moreover, P‐SnN4‐CNT achieved an extremely high turnover frequency of 126 471 h−1 with an applied potential of −0.8 V versus RHE, which ranks the best among the reported M─N─C catalysts for electrocatalytic CO2 reduction. The combination of in situ characterization techniques and density functional theory calculation revealed that the doping of P atoms benefited the activation and hydrogenation steps of CO2 and promoted the Sn4+ reduction to Sn2+ during the reaction process, where Sn2+ is identified as the active site for the CO generation. The work provides a clear mechanistic insight for both electron structure optimization and identification of active sites by local microenvironment regulation of single‐Sn‐atom, which shall pave a way for the exploitation of other M─N─C catalysts with high CO2RR performance.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过掺杂 P 实现单锑原子催化剂的二次配位层工程,以实现高效的二氧化碳电还原
调节单原子催化剂的局部微环境为加速电化学二氧化碳还原反应(CO2RR)的整体反应动力学提供了方案,这一点至关重要,但仍具有挑战性。本文通过改进的热解过程,在 SnN4 分子的第二配位层中掺入 P,以调节金属 Sn 中心的电子结构,从而开发出一种碳纳米管支撑的单 Sn 原子催化剂(P-SnN4-CNT)。所制备的 P-SnN4-CNT 在-0.5 至 -0.8 V 的宽电压范围内与可逆氢电极(vs RHE)相比,可提供 -380 mA cm-2 的高 CO 部分电流密度,CO 的法拉第效率(FE)超过 90%,在-0.6 V 的电压范围内与 RHE 相比,流动池中的最佳 FE(CO)≈98.5%。此外,P-SnN4-CNT 在-0.8 V 相对于 RHE 的应用电位下实现了 126 471 h-1 的极高周转频率,在已报道的 M─N─C 催化剂电催化二氧化碳还原中名列前茅。结合原位表征技术和密度泛函理论计算发现,P 原子的掺杂有利于 CO2 的活化和氢化步骤,并在反应过程中促进 Sn4+ 还原成 Sn2+,其中 Sn2+ 被确定为 CO 生成的活性位点。这项工作为电子结构优化和通过单个 Sn 原子的局部微环境调节确定活性位点提供了清晰的机理认识,这将为开发其他具有高 CO2RR 性能的 M─N─C 催化剂铺平道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Energy Materials
Advanced Energy Materials CHEMISTRY, PHYSICAL-ENERGY & FUELS
CiteScore
41.90
自引率
4.00%
发文量
889
审稿时长
1.4 months
期刊介绍: Established in 2011, Advanced Energy Materials is an international, interdisciplinary, English-language journal that focuses on materials used in energy harvesting, conversion, and storage. It is regarded as a top-quality journal alongside Advanced Materials, Advanced Functional Materials, and Small. With a 2022 Impact Factor of 27.8, Advanced Energy Materials is considered a prime source for the best energy-related research. The journal covers a wide range of topics in energy-related research, including organic and inorganic photovoltaics, batteries and supercapacitors, fuel cells, hydrogen generation and storage, thermoelectrics, water splitting and photocatalysis, solar fuels and thermosolar power, magnetocalorics, and piezoelectronics. The readership of Advanced Energy Materials includes materials scientists, chemists, physicists, and engineers in both academia and industry. The journal is indexed in various databases and collections, such as Advanced Technologies & Aerospace Database, FIZ Karlsruhe, INSPEC (IET), Science Citation Index Expanded, Technology Collection, and Web of Science, among others.
期刊最新文献
3D Printing of Tungstate Anion Modulated 1T-MoS2 Composite Cathodes for High-Performance Lithium–Sulfur Batteries Solar-Driven Photoelectrochemical Upcycling of Polyimide Plastic Waste with Safe Green Hydrogen Generation Recent Progress and Perspective in Pure Water-Fed Anion Exchange Membrane Water Electrolyzers Silicon-Inspired Analysis of Interfacial Recombination in Perovskite Photovoltaics Boosted Charge Transfer for Highly Efficient Photosynthesis of H2O2 over Z-Scheme I−/K+ Co-Doped g-C3N4/Metal–Organic-Frameworks in Pure Water under Visible Light
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1