Theoretical Study on the Influence of the Multistage Throttling Structure during the Venting Operation

IF 3.8 3区 工程技术 Q2 ENGINEERING, CHEMICAL Industrial & Engineering Chemistry Research Pub Date : 2024-06-26 DOI:10.1021/acs.iecr.4c01216
Shuai Yu, Xingqing Yan, Yifan He, Jianliang Yu*, Lei Chen and Shaoyun Chen, 
{"title":"Theoretical Study on the Influence of the Multistage Throttling Structure during the Venting Operation","authors":"Shuai Yu,&nbsp;Xingqing Yan,&nbsp;Yifan He,&nbsp;Jianliang Yu*,&nbsp;Lei Chen and Shaoyun Chen,&nbsp;","doi":"10.1021/acs.iecr.4c01216","DOIUrl":null,"url":null,"abstract":"<p >The venting operation is a primary measure to mitigate overpressure in CO<sub>2</sub> transport pipelines. It involves intense oscillations and the threat of low temperatures arising from the throttling effect. Multistage throttling structures have been proven to effectively enhance the stability of the system, and the objective of this study is to explore the impact of multistage throttling structures on the pressure and temperature within the throttling structure using a one-dimensional model. The results indicate that by appropriately setting the numbering of valves, valve openings, and diameter of throttling pipes, multistage throttling can effectively elevate the temperature of the throttling structure. However, it is noteworthy that achieving the avoidance of low-temperature phenomena comes at the expense of reducing the pressure drop rate within the main pipeline. Therefore, the practical application should consider a balanced approach to both the low temperature in the throttling structure and the overpressure in the main pipeline.</p>","PeriodicalId":39,"journal":{"name":"Industrial & Engineering Chemistry Research","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Industrial & Engineering Chemistry Research","FirstCategoryId":"5","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.iecr.4c01216","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The venting operation is a primary measure to mitigate overpressure in CO2 transport pipelines. It involves intense oscillations and the threat of low temperatures arising from the throttling effect. Multistage throttling structures have been proven to effectively enhance the stability of the system, and the objective of this study is to explore the impact of multistage throttling structures on the pressure and temperature within the throttling structure using a one-dimensional model. The results indicate that by appropriately setting the numbering of valves, valve openings, and diameter of throttling pipes, multistage throttling can effectively elevate the temperature of the throttling structure. However, it is noteworthy that achieving the avoidance of low-temperature phenomena comes at the expense of reducing the pressure drop rate within the main pipeline. Therefore, the practical application should consider a balanced approach to both the low temperature in the throttling structure and the overpressure in the main pipeline.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
排气运行时多级节流结构影响的理论研究
排气操作是减轻二氧化碳运输管道超压的主要措施。它涉及剧烈振荡和节流效应产生的低温威胁。多级节流结构已被证明能有效提高系统的稳定性,本研究的目的是利用一维模型探讨多级节流结构对节流结构内压力和温度的影响。结果表明,通过合理设置阀门数量、阀门开度和节流管道直径,多级节流可以有效提高节流结构的温度。但值得注意的是,避免低温现象的发生是以降低主管道内压降率为代价的。因此,在实际应用中,应考虑同时兼顾节流结构的低温和主管道的超压。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Industrial & Engineering Chemistry Research
Industrial & Engineering Chemistry Research 工程技术-工程:化工
CiteScore
7.40
自引率
7.10%
发文量
1467
审稿时长
2.8 months
期刊介绍: ndustrial & Engineering Chemistry, with variations in title and format, has been published since 1909 by the American Chemical Society. Industrial & Engineering Chemistry Research is a weekly publication that reports industrial and academic research in the broad fields of applied chemistry and chemical engineering with special focus on fundamentals, processes, and products.
期刊最新文献
Illumination Invariant Automated Drop Size Estimation Catalytic CO2 Capture Performance of a MEA-EAE-DEEA Trisolvent in a Hot Silicon Oil-Based Pilot Plant CCU-Llama: A Knowledge Extraction LLM for Carbon Capture and Utilization by Mining Scientific Literature Data One-Pot Coating of Ceramic Powders by Exfoliated Boron Nitride Layers with a Dense CO2 Medium and Ultrasound-Aided Mixing Ammonium Chloride Powder Feeding for the Simultaneous Reduction of NOx and Oxidation of Hg0 in the SCR Process
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1