Atomic-scale compositional complexity ductilizes eutectic phase towards creep-resistant Al-Ce alloys with improved fracture toughness

IF 8.3 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Acta Materialia Pub Date : 2024-06-24 DOI:10.1016/j.actamat.2024.120133
Meng Yi , Peng Zhang , Sihao Deng , Hang Xue , Chong Yang , Fuzhu Liu , Bin Chen , Shenghua Wu , Huaile Lu , Zhijian Tan , Jinyu Zhang , Yong Peng , Gang Liu , Lunhua He , Jun Sun
{"title":"Atomic-scale compositional complexity ductilizes eutectic phase towards creep-resistant Al-Ce alloys with improved fracture toughness","authors":"Meng Yi ,&nbsp;Peng Zhang ,&nbsp;Sihao Deng ,&nbsp;Hang Xue ,&nbsp;Chong Yang ,&nbsp;Fuzhu Liu ,&nbsp;Bin Chen ,&nbsp;Shenghua Wu ,&nbsp;Huaile Lu ,&nbsp;Zhijian Tan ,&nbsp;Jinyu Zhang ,&nbsp;Yong Peng ,&nbsp;Gang Liu ,&nbsp;Lunhua He ,&nbsp;Jun Sun","doi":"10.1016/j.actamat.2024.120133","DOIUrl":null,"url":null,"abstract":"<div><p>Hierarchical microstructures spanning from micro-sized eutectic structure to nano-sized precipitates are promisingly engineered in lightweight Al alloys to improve the high-temperature creep resistance that is increasingly required for rapid industrial development. However, the intrinsically-brittle eutectic phase is ready to fracture upon applied loading, which, dramatically reducing room-temperature ductility and fracture toughness, greatly hampers practical applications of the creep-resistant Al alloys. Here, through the combination of Sc microalloying with sub-rapid solidification, we observe the ductilization of Al<sub>11</sub>Ce<sub>3</sub> eutectic phase in cast heat-resistant Al-Ce-Sc alloys due to the formation of atomic-scale compositional complexity. High-concentration Sc atoms are frozen within the Al<sub>11</sub>Ce<sub>3</sub> intermetallic phase by the sub-rapid solidification, which then assemble into unusual atomic-scale compositional dipoles with the Sc atoms enriched at one pole and the Al atoms at the opposite during subsequent heat treatment. The dispersed Sc-Al compositional dipoles induce local lattice distortions that stimulate dislocation activities, as temporally and spatially visualized by <em>in-situ</em> neutron diffraction tensile test and microstructural characterizations. The unexpected plastic deformation triggered in Al<sub>11</sub>Ce<sub>3</sub> improves the deformation compatibility between the eutectic phases, enabling the sub-rapidly-solidified Al-Ce-Sc alloy to reach a room-temperature tensile elongation 3 times and fracture toughness over 8 times of its counterpart derived from traditional solidification. In addition, the sub-rapidly-solidified Al-Ce-Sc alloy exhibits an excellent creep resistance at 300 °C, achieving a tensile creep stress threshold of ∼ 70 MPa. These findings provide new perspectives on the design of ductile intermetallic phases and the development of creep-resistant Al alloys with application-level ductility.</p></div>","PeriodicalId":238,"journal":{"name":"Acta Materialia","volume":null,"pages":null},"PeriodicalIF":8.3000,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Materialia","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359645424004841","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Hierarchical microstructures spanning from micro-sized eutectic structure to nano-sized precipitates are promisingly engineered in lightweight Al alloys to improve the high-temperature creep resistance that is increasingly required for rapid industrial development. However, the intrinsically-brittle eutectic phase is ready to fracture upon applied loading, which, dramatically reducing room-temperature ductility and fracture toughness, greatly hampers practical applications of the creep-resistant Al alloys. Here, through the combination of Sc microalloying with sub-rapid solidification, we observe the ductilization of Al11Ce3 eutectic phase in cast heat-resistant Al-Ce-Sc alloys due to the formation of atomic-scale compositional complexity. High-concentration Sc atoms are frozen within the Al11Ce3 intermetallic phase by the sub-rapid solidification, which then assemble into unusual atomic-scale compositional dipoles with the Sc atoms enriched at one pole and the Al atoms at the opposite during subsequent heat treatment. The dispersed Sc-Al compositional dipoles induce local lattice distortions that stimulate dislocation activities, as temporally and spatially visualized by in-situ neutron diffraction tensile test and microstructural characterizations. The unexpected plastic deformation triggered in Al11Ce3 improves the deformation compatibility between the eutectic phases, enabling the sub-rapidly-solidified Al-Ce-Sc alloy to reach a room-temperature tensile elongation 3 times and fracture toughness over 8 times of its counterpart derived from traditional solidification. In addition, the sub-rapidly-solidified Al-Ce-Sc alloy exhibits an excellent creep resistance at 300 °C, achieving a tensile creep stress threshold of ∼ 70 MPa. These findings provide new perspectives on the design of ductile intermetallic phases and the development of creep-resistant Al alloys with application-level ductility.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
原子尺度的成分复杂性使共晶相具有延展性,从而形成具有更好断裂韧性的抗蠕变铝铈合金
在轻质铝合金中设计从微小共晶结构到纳米级析出物的分层微结构很有希望提高高温抗蠕变性,而这正是快速工业发展所日益需要的。然而,内在脆性共晶相在施加载荷时随时可能断裂,这大大降低了室温延展性和断裂韧性,极大地阻碍了抗蠕变铝合金的实际应用。在这里,通过将 Sc 微合金化与亚快速凝固相结合,我们观察到在铸造耐热 Al-Ce-Sc 合金中,由于原子尺度成分复杂性的形成,AlCe 共晶相发生了延展。高浓度 Sc 原子在亚快速凝固过程中凝固在 AlCe 金属间相中,然后在随后的热处理过程中聚集成不寻常的原子尺度成分偶极,Sc 原子富集在一极,Al 原子富集在另一极。分散的 Sc-Al 成分偶极子会引起局部晶格畸变,从而刺激位错活动,中子衍射拉伸试验和微观结构特征可在时间和空间上对其进行观察。在 AlCe 中引发的意外塑性变形改善了共晶相之间的变形兼容性,使亚快速凝固的 Al-Ce-Sc 合金的室温拉伸伸长率达到传统凝固法的 3 倍,断裂韧性超过 8 倍。此外,亚快速凝固的 Al-Ce-Sc 合金在 300 ℃ 下表现出优异的抗蠕变性,拉伸蠕变应力阈值达到 70 兆帕。这些发现为延展性金属间相的设计和具有应用级延展性的抗蠕变铝合金的开发提供了新的视角。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Acta Materialia
Acta Materialia 工程技术-材料科学:综合
CiteScore
16.10
自引率
8.50%
发文量
801
审稿时长
53 days
期刊介绍: Acta Materialia serves as a platform for publishing full-length, original papers and commissioned overviews that contribute to a profound understanding of the correlation between the processing, structure, and properties of inorganic materials. The journal seeks papers with high impact potential or those that significantly propel the field forward. The scope includes the atomic and molecular arrangements, chemical and electronic structures, and microstructure of materials, focusing on their mechanical or functional behavior across all length scales, including nanostructures.
期刊最新文献
Unraveling factors affecting the reversibility of martensitic phase transformation in FeNiCoAlTi shape memory alloys: Insights from HR-EBSD and acoustic emission analysis Chalcogenide perovskite BaZrS3 bulks for thermoelectric conversion with ultra-high carrier mobility and low thermal conductivity Dynamic recrystallization in a near β titanium alloy under different deformation modes – Transition and correlation The role of microfaceting in heteroepitaxial interfaces Abnormal grain growth behavior in gradient nanostructured titanium investigated by coupled quasi-in-situ EBSD experiments and phase-field simulations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1