Locally Varying Surface Binding Affinity on Pd–Au Nanocrystals Enhances Electrochemical Ethanol Oxidation Activity

IF 15.8 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY ACS Nano Pub Date : 2024-06-28 DOI:10.1021/acsnano.4c06063
Xiaoxiao Wang, Hao Yang, Moxuan Liu, Zhaojun Liu, Kai Liu, Zerui Mu, Yan Zhang, Tao Cheng, Chuanbo Gao
{"title":"Locally Varying Surface Binding Affinity on Pd–Au Nanocrystals Enhances Electrochemical Ethanol Oxidation Activity","authors":"Xiaoxiao Wang, Hao Yang, Moxuan Liu, Zhaojun Liu, Kai Liu, Zerui Mu, Yan Zhang, Tao Cheng, Chuanbo Gao","doi":"10.1021/acsnano.4c06063","DOIUrl":null,"url":null,"abstract":"Noble metal nanocrystals face challenges in effectively catalyzing electrochemical ethanol oxidation reaction (EOR)-represented multistep, multielectron transfer processes due to the linear scaling relationship among binding energies of intermediates, impeding independent optimization of individual elemental steps. Herein, we develop noble metal nanocrystals with a range of local surface binding affinities in close proximity to overcome this challenge. Experimentally, this is demonstrated by applying tensile strain to a Pd surface and decorating it with discrete Au atoms, forming a diversity of binding sites with varying affinities in close proximity for guest molecules, as evidenced by CO probing and density functional theory calculations. Such a surface enables reaction intermediates to migrate between different binding sites as needed for each elemental step, thereby reducing the energy barrier for the overall EOR when compared to reactions at a single site. On these tailored surfaces, we attain specific and mass activities of 32.7 mA cm<sup>–2</sup> and 47.8 A mg<sub>Pd</sub><sup>–1</sup> in EOR, surpassing commercial Pd/C by 10.9 and 43.8 times, respectively, and outperforming state-of-the-art Pd-based catalysts. These results highlight the promise of this approach in improving a variety of multistep, multielectron transfer reactions, which are crucial for energy conversion applications.","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":null,"pages":null},"PeriodicalIF":15.8000,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsnano.4c06063","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Noble metal nanocrystals face challenges in effectively catalyzing electrochemical ethanol oxidation reaction (EOR)-represented multistep, multielectron transfer processes due to the linear scaling relationship among binding energies of intermediates, impeding independent optimization of individual elemental steps. Herein, we develop noble metal nanocrystals with a range of local surface binding affinities in close proximity to overcome this challenge. Experimentally, this is demonstrated by applying tensile strain to a Pd surface and decorating it with discrete Au atoms, forming a diversity of binding sites with varying affinities in close proximity for guest molecules, as evidenced by CO probing and density functional theory calculations. Such a surface enables reaction intermediates to migrate between different binding sites as needed for each elemental step, thereby reducing the energy barrier for the overall EOR when compared to reactions at a single site. On these tailored surfaces, we attain specific and mass activities of 32.7 mA cm–2 and 47.8 A mgPd–1 in EOR, surpassing commercial Pd/C by 10.9 and 43.8 times, respectively, and outperforming state-of-the-art Pd-based catalysts. These results highlight the promise of this approach in improving a variety of multistep, multielectron transfer reactions, which are crucial for energy conversion applications.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
钯金纳米晶体上局部变化的表面结合亲和力增强了电化学乙醇氧化活性
贵金属纳米晶体在有效催化以电化学乙醇氧化反应(EOR)为代表的多步骤、多电子转移过程方面面临挑战,原因是中间产物的结合能之间存在线性比例关系,阻碍了单个元素步骤的独立优化。在此,我们开发了具有一系列接近的局部表面结合亲和力的贵金属纳米晶体,以克服这一挑战。实验证明,通过对钯表面施加拉伸应变并用离散的金原子进行装饰,就能在客体分子附近形成具有不同亲和力的多种结合位点,这一点已通过二氧化碳探测和密度泛函理论计算得到证实。这种表面可使反应中间产物根据每个元素步骤的需要在不同结合位点之间迁移,从而与在单一位点上的反应相比,降低了整个 EOR 的能量障碍。在这些定制表面上,我们在 EOR 中获得了 32.7 mA cm-2 和 47.8 A mgPd-1 的比活度和质量活度,分别是商用 Pd/C 的 10.9 倍和 43.8 倍,超过了最先进的钯基催化剂。这些结果凸显了这种方法在改善各种多步骤、多电子转移反应方面的前景,而这些反应对于能源转换应用至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Nano
ACS Nano 工程技术-材料科学:综合
CiteScore
26.00
自引率
4.10%
发文量
1627
审稿时长
1.7 months
期刊介绍: ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.
期刊最新文献
23.81%-Efficiency Flexible Inverted Perovskite Solar Cells with Enhanced Stability and Flexibility via a Lewis Base Passivation. Biomimetic Trypsin-Responsive Structure-Bridged Mesoporous Organosilica Nanomedicine for Precise Treatment of Acute Pancreatitis. Direct Optical Patterning of Metal-Organic Frameworks via Photoacid-Induced Etching. Quantifying Ultrafast Energy Transfer from Plasmonic Hot Carriers for Pulsed Photocatalysis on Nanostructures. Transforming Albumin into a Trojan Horse of Immunotherapy-Resistant Colorectal Cancer with a High Microsatellite Instability.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1