Suppression of Adverse Phase Transition of Layered Oxide Cathode via Local Electronic Structure Regulation for High-Capacity Sodium-Ion Batteries

IF 15.8 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY ACS Nano Pub Date : 2024-07-01 DOI:10.1021/acsnano.4c04847
Qi Wang, Guihui Yu, Bi Luo, Weijie Ji, Zihang Liu, Minghuang Li, Yutong Nong, Yi Tian, Xiaowei Wang*, Jiafeng Zhang*, Chi-Liang Chen, Chung-Kai Chang, Zhiyuan Sang, Zaowen Zhao, Ruirui Zhao* and Ji Liang*, 
{"title":"Suppression of Adverse Phase Transition of Layered Oxide Cathode via Local Electronic Structure Regulation for High-Capacity Sodium-Ion Batteries","authors":"Qi Wang,&nbsp;Guihui Yu,&nbsp;Bi Luo,&nbsp;Weijie Ji,&nbsp;Zihang Liu,&nbsp;Minghuang Li,&nbsp;Yutong Nong,&nbsp;Yi Tian,&nbsp;Xiaowei Wang*,&nbsp;Jiafeng Zhang*,&nbsp;Chi-Liang Chen,&nbsp;Chung-Kai Chang,&nbsp;Zhiyuan Sang,&nbsp;Zaowen Zhao,&nbsp;Ruirui Zhao* and Ji Liang*,&nbsp;","doi":"10.1021/acsnano.4c04847","DOIUrl":null,"url":null,"abstract":"<p >Advancing the high-voltage stability of the O3-type layered cathodes for sodium-ion batteries is critical to boost their progress in energy storage applications. However, this type of cathode often suffers from intricate phase transition and structural degradation at high voltages (i.e., &gt;4.0 V vs Na<sup>+</sup>/Na), resulting in rapid capacity decay. Here, we present a Li/Ti cosubstitution strategy to modify the electronic configuration of oxygen elements in the O3-type layered oxide cathode. This deliberate modulation simultaneously mitigates the phase transitions and counteracts the weakening of the shielding effect resulting from the extraction of sodium ions, thus enhancing the electrostatic bonding within the TM layer and inducing and optimizing the O3–OP2 phase transition occurring in the voltage range of 2.0–4.3 V. Consequently, the cosubstituted NaLi<sub>1/9</sub>Ni<sub>1/3</sub>Mn<sub>4/9</sub>Ti<sub>1/9</sub>O<sub>2</sub> exhibits an astounding capacity of 161.2 mAh g<sup>–1</sup> in the voltage range of 2.0–4.3 V at 1C, and stable cycling up to 100 cycles has been achieved. This work shows the impact mechanism of element substitution on interlayer forces and phase transitions, providing a crucial reference for the optimization of O3-type materials.</p>","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":null,"pages":null},"PeriodicalIF":15.8000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsnano.4c04847","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Advancing the high-voltage stability of the O3-type layered cathodes for sodium-ion batteries is critical to boost their progress in energy storage applications. However, this type of cathode often suffers from intricate phase transition and structural degradation at high voltages (i.e., >4.0 V vs Na+/Na), resulting in rapid capacity decay. Here, we present a Li/Ti cosubstitution strategy to modify the electronic configuration of oxygen elements in the O3-type layered oxide cathode. This deliberate modulation simultaneously mitigates the phase transitions and counteracts the weakening of the shielding effect resulting from the extraction of sodium ions, thus enhancing the electrostatic bonding within the TM layer and inducing and optimizing the O3–OP2 phase transition occurring in the voltage range of 2.0–4.3 V. Consequently, the cosubstituted NaLi1/9Ni1/3Mn4/9Ti1/9O2 exhibits an astounding capacity of 161.2 mAh g–1 in the voltage range of 2.0–4.3 V at 1C, and stable cycling up to 100 cycles has been achieved. This work shows the impact mechanism of element substitution on interlayer forces and phase transitions, providing a crucial reference for the optimization of O3-type materials.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过局部电子结构调整抑制层状氧化物阴极的不利相变,实现高容量钠离子电池。
提高钠离子电池 O3 型层状阴极的高压稳定性对于促进其在储能应用领域的发展至关重要。然而,这种类型的阴极在高电压下(即对 Na+/Na >4.0 V)往往会出现错综复杂的相变和结构退化,从而导致容量快速衰减。在此,我们提出了一种锂/钛共置换策略,以改变 O3 型层状氧化物阴极中氧元素的电子构型。这种有意的调制同时缓解了相变,并抵消了钠离子萃取导致的屏蔽效应的减弱,从而增强了 TM 层内的静电结合,诱导并优化了发生在 2.0-4.3 V 电压范围内的 O3-OP2 相变。因此,共取代 NaLi1/9Ni1/3Mn4/9Ti1/9O2 在 2.0-4.3 V 的电压范围内于 1C 时显示出 161.2 mAh g-1 的惊人容量,并实现了长达 100 次的稳定循环。这项研究显示了元素替代对层间作用力和相变的影响机制,为优化 O3 型材料提供了重要参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Nano
ACS Nano 工程技术-材料科学:综合
CiteScore
26.00
自引率
4.10%
发文量
1627
审稿时长
1.7 months
期刊介绍: ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.
期刊最新文献
A Dual-Function LipoAraN-E5 Coloaded with N4-Myristyloxycarbonyl-1-β-d-arabinofuranosylcytosine (AraN) and a CXCR4 Antagonistic Peptide (E5) for Blocking the Dissemination of Acute Myeloid Leukemia. Deep Learning-Enhanced Paper-Based Vertical Flow Assay for High-Sensitivity Troponin Detection Using Nanoparticle Amplification. Defect-Mediated Formation of Oriented Phase Domains in a Lithium-Ion Insertion Electrode. Facilely Achieving Near-Infrared-II J-Aggregates through Molecular Bending on a Donor-Acceptor Fluorophore for High-Performance Tumor Phototheranostics. Highly Efficient Electrocatalytic Nitrate Reduction to Ammonia: Group VIII-Based Catalysts.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1