Enzyme-Immobilized Porous Crystals for Environmental Applications

IF 10.8 1区 环境科学与生态学 Q1 ENGINEERING, ENVIRONMENTAL 环境科学与技术 Pub Date : 2024-06-28 DOI:10.1021/acs.est.4c01273
Hao Wang, Xiaoxue Kou, Rui Gao*, Siming Huang, Guosheng Chen* and Gangfeng Ouyang, 
{"title":"Enzyme-Immobilized Porous Crystals for Environmental Applications","authors":"Hao Wang,&nbsp;Xiaoxue Kou,&nbsp;Rui Gao*,&nbsp;Siming Huang,&nbsp;Guosheng Chen* and Gangfeng Ouyang,&nbsp;","doi":"10.1021/acs.est.4c01273","DOIUrl":null,"url":null,"abstract":"<p >Developing efficient technologies to eliminate or degrade contaminants is paramount for environmental protection. Biocatalytic decontamination offers distinct advantages in terms of selectivity and efficiency; however, it still remains challenging when applied in complex environmental matrices. The main challenge originates from the instability and difficult-to-separate attributes of fragile enzymes, which also results in issues of compromised activity, poor reusability, low cost-effectiveness, etc. One viable solution to harness biocatalysis in complex environments is known as enzyme immobilization, where a flexible enzyme is tightly fixed in a solid carrier. In the case where a reticular crystal is utilized as the support, it is feasible to engineer next-generation biohybrid catalysts functional in complicated environmental media. This can be interpreted by three aspects: (1) the highly crystalline skeleton can shield the immobilized enzyme against external stressors. (2) The porous network ensures the high accessibility of the interior enzyme for catalytic decontamination. And (3) the adjustable and unambiguous structure of the reticular framework favors in-depth understanding of the interfacial interaction between the framework and enzyme, which can in turn guide us in designing highly active biocomposites. This Review aims to introduce this emerging biocatalysis technology for environmental decontamination involving pollutant degradation and greenhouse gas (carbon dioxide) conversion, with emphasis on the enzyme immobilization protocols and diverse catalysis principles including single enzyme catalysis, catalysis involving enzyme cascades, and photoenzyme-coupled catalysis. Additionally, the remaining challenges and forward-looking directions in this field are discussed. We believe that this Review may offer a useful biocatalytic technology to contribute to environmental decontamination in a green and sustainable manner and will inspire more researchers at the intersection of the environment science, biochemistry, and materials science communities to co-solve environmental problems.</p>","PeriodicalId":36,"journal":{"name":"环境科学与技术","volume":null,"pages":null},"PeriodicalIF":10.8000,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"环境科学与技术","FirstCategoryId":"1","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.est.4c01273","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Developing efficient technologies to eliminate or degrade contaminants is paramount for environmental protection. Biocatalytic decontamination offers distinct advantages in terms of selectivity and efficiency; however, it still remains challenging when applied in complex environmental matrices. The main challenge originates from the instability and difficult-to-separate attributes of fragile enzymes, which also results in issues of compromised activity, poor reusability, low cost-effectiveness, etc. One viable solution to harness biocatalysis in complex environments is known as enzyme immobilization, where a flexible enzyme is tightly fixed in a solid carrier. In the case where a reticular crystal is utilized as the support, it is feasible to engineer next-generation biohybrid catalysts functional in complicated environmental media. This can be interpreted by three aspects: (1) the highly crystalline skeleton can shield the immobilized enzyme against external stressors. (2) The porous network ensures the high accessibility of the interior enzyme for catalytic decontamination. And (3) the adjustable and unambiguous structure of the reticular framework favors in-depth understanding of the interfacial interaction between the framework and enzyme, which can in turn guide us in designing highly active biocomposites. This Review aims to introduce this emerging biocatalysis technology for environmental decontamination involving pollutant degradation and greenhouse gas (carbon dioxide) conversion, with emphasis on the enzyme immobilization protocols and diverse catalysis principles including single enzyme catalysis, catalysis involving enzyme cascades, and photoenzyme-coupled catalysis. Additionally, the remaining challenges and forward-looking directions in this field are discussed. We believe that this Review may offer a useful biocatalytic technology to contribute to environmental decontamination in a green and sustainable manner and will inspire more researchers at the intersection of the environment science, biochemistry, and materials science communities to co-solve environmental problems.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于环境应用的酶固定多孔晶体。
开发消除或降解污染物的高效技术对于环境保护至关重要。生物催化净化技术在选择性和效率方面具有明显优势,但在复杂的环境基质中应用时仍面临挑战。主要的挑战来自于脆弱酶的不稳定性和难以分离的特性,这也导致了活性受损、重复利用率低、成本效益低等问题。在复杂环境中利用生物催化的一个可行解决方案是酶固定化,即将柔性酶紧密固定在固体载体上。利用网状晶体作为载体,可以设计出在复杂环境介质中发挥作用的新一代生物杂化催化剂。这可以从三个方面来解释:(1)高度结晶的骨架可以保护固定的酶免受外部压力的影响。(2)多孔网络确保了内部酶在催化净化过程中的高度可及性。(3) 网状骨架结构可调且明确,有利于深入了解骨架与酶之间的界面相互作用,从而指导我们设计高活性生物复合材料。本综述旨在介绍这种新兴的生物催化技术,用于污染物降解和温室气体(二氧化碳)转化等环境净化,重点介绍酶固定化方案和各种催化原理,包括单酶催化、酶级联催化和光酶耦合催化。此外,还讨论了该领域仍面临的挑战和前瞻性方向。我们相信,这篇综述可能会提供一种有用的生物催化技术,以绿色和可持续的方式为环境净化做出贡献,并将激励环境科学、生物化学和材料科学界的更多研究人员共同解决环境问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
环境科学与技术
环境科学与技术 环境科学-工程:环境
CiteScore
17.50
自引率
9.60%
发文量
12359
审稿时长
2.8 months
期刊介绍: Environmental Science & Technology (ES&T) is a co-sponsored academic and technical magazine by the Hubei Provincial Environmental Protection Bureau and the Hubei Provincial Academy of Environmental Sciences. Environmental Science & Technology (ES&T) holds the status of Chinese core journals, scientific papers source journals of China, Chinese Science Citation Database source journals, and Chinese Academic Journal Comprehensive Evaluation Database source journals. This publication focuses on the academic field of environmental protection, featuring articles related to environmental protection and technical advancements.
期刊最新文献
Antibiotics and Pesticides Enhancing the Transfer of Resistomes among Soil-Bayberry-Fruit Fly Food Chain in the Orchard Ecosystem. Molecular Insights into Gas-Particle Partitioning and Viscosity of Atmospheric Brown Carbon. Monitoring the Biochemical Activity of Single Anammox Granules with Microbarometers. Rethinking Porosity-Based Diffusivity Estimates for Sorptive Gas Transport at Variable Temperatures. The Role of Human Adiponectin Receptor 1 in 2-Ethylhexyl Diphenyl Phosphate Induced Lipid Metabolic Disruption.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1