Optimizing chitosan derived from Metapenaeus affinis: a novel anti-biofilm agent against Pseudomonas aeruginosa.

IF 3.5 3区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY AMB Express Pub Date : 2024-06-29 DOI:10.1186/s13568-024-01732-1
Anali Riahi, Hadideh Mabudi, Elahe Tajbakhsh, Laleh Roomiani, Hasan Momtaz
{"title":"Optimizing chitosan derived from Metapenaeus affinis: a novel anti-biofilm agent against Pseudomonas aeruginosa.","authors":"Anali Riahi, Hadideh Mabudi, Elahe Tajbakhsh, Laleh Roomiani, Hasan Momtaz","doi":"10.1186/s13568-024-01732-1","DOIUrl":null,"url":null,"abstract":"<p><p>Pseudomonas aeruginosa is a commonly found Gram-negative bacterium in healthcare facilities and is renowned for its ability to form biofilms and its virulence factors that are controlled by quorum sensing (QS) systems. The increasing prevalence of multidrug-resistant strains of this bacterium poses a significant challenge in the field of medicine. Consequently, the exploration of novel antimicrobial agents has become a top priority. This research aims to optimize chitosan derived from white shrimp (Metapenaeus affinis) using the Response Surface Methodology (RSM) computational approach. The objective is to investigate chitosan's potential as a solution for inhibiting QS activity and biofilm formation in P. aeruginosa ATCC 10,145. Under optimized conditions, chitin was treated with NaOH (1.41 M) for 15.75 h, HCl (7.49% vol) for 2.01 h, and at a deacetylation temperature of 81.15 °C. The resulting chitosan exhibited a degree of deacetylation (DD%) exceeding 93.98%, as confirmed by Fourier-transform infrared (FTIR) spectral analysis, indicating its high purity. The extracted chitosan demonstrated a significant synergistic antibiotic effect against P. aeruginosa when combined with ceftazidime, enhancing its bactericidal activity by up to 15-fold. In addition, sub-MIC (minimum inhibitory concentration) concentrations of extracted chitosan (10 and 100 µg/mL) successfully reduced the production of pyocyanin and rhamnolipid, as well as the swimming motility, protease activity and biofilm formation ability in comparison to the control group (P < 0.05). Moreover, chitosan treatment downregulated the RhlR and LasR genes in P. aeruginosa when compared to the control group (P < 0.05). The optimized chitosan extract shows significant potential as a coating agent for surgical equipment, effectively preventing nosocomial infections caused by P. aeruginosa pathogens.</p>","PeriodicalId":7537,"journal":{"name":"AMB Express","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11217230/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AMB Express","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s13568-024-01732-1","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Pseudomonas aeruginosa is a commonly found Gram-negative bacterium in healthcare facilities and is renowned for its ability to form biofilms and its virulence factors that are controlled by quorum sensing (QS) systems. The increasing prevalence of multidrug-resistant strains of this bacterium poses a significant challenge in the field of medicine. Consequently, the exploration of novel antimicrobial agents has become a top priority. This research aims to optimize chitosan derived from white shrimp (Metapenaeus affinis) using the Response Surface Methodology (RSM) computational approach. The objective is to investigate chitosan's potential as a solution for inhibiting QS activity and biofilm formation in P. aeruginosa ATCC 10,145. Under optimized conditions, chitin was treated with NaOH (1.41 M) for 15.75 h, HCl (7.49% vol) for 2.01 h, and at a deacetylation temperature of 81.15 °C. The resulting chitosan exhibited a degree of deacetylation (DD%) exceeding 93.98%, as confirmed by Fourier-transform infrared (FTIR) spectral analysis, indicating its high purity. The extracted chitosan demonstrated a significant synergistic antibiotic effect against P. aeruginosa when combined with ceftazidime, enhancing its bactericidal activity by up to 15-fold. In addition, sub-MIC (minimum inhibitory concentration) concentrations of extracted chitosan (10 and 100 µg/mL) successfully reduced the production of pyocyanin and rhamnolipid, as well as the swimming motility, protease activity and biofilm formation ability in comparison to the control group (P < 0.05). Moreover, chitosan treatment downregulated the RhlR and LasR genes in P. aeruginosa when compared to the control group (P < 0.05). The optimized chitosan extract shows significant potential as a coating agent for surgical equipment, effectively preventing nosocomial infections caused by P. aeruginosa pathogens.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
优化甲壳素:一种新型抗铜绿假单胞菌生物膜剂。
铜绿假单胞菌是医疗机构中常见的革兰氏阴性细菌,因其形成生物膜的能力和受法定量感应(QS)系统控制的毒力因子而闻名。这种细菌的多重耐药菌株日益普遍,给医学领域带来了巨大挑战。因此,探索新型抗菌剂已成为当务之急。本研究旨在利用响应面方法(RSM)计算方法优化从南美白对虾(Metapenaeus affinis)中提取的壳聚糖。目的是研究壳聚糖作为抑制铜绿微囊藻 ATCC 10,145 的 QS 活性和生物膜形成的解决方案的潜力。在优化条件下,壳聚糖用 NaOH(1.41 M)处理 15.75 小时,用 HCl(7.49% vol%)处理 2.01 小时,脱乙酰化温度为 81.15 °C。经傅立叶变换红外光谱分析证实,所得壳聚糖的脱乙酰度(DD%)超过 93.98%,表明其纯度很高。提取的壳聚糖与头孢唑肟联合使用时,对铜绿假单胞菌具有显著的协同抗生素效应,可将头孢唑肟的杀菌活性提高 15 倍。此外,与对照组相比,亚 MIC(最小抑菌浓度)浓度的提取壳聚糖(10 微克/毫升和 100 微克/毫升)成功地减少了铜绿假单胞菌脓胞素和鼠李糖脂的产生,并降低了其游动性、蛋白酶活性和生物膜形成能力(P<0.05)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
AMB Express
AMB Express BIOTECHNOLOGY & APPLIED MICROBIOLOGY-
CiteScore
7.20
自引率
2.70%
发文量
141
审稿时长
13 weeks
期刊介绍: AMB Express is a high quality journal that brings together research in the area of Applied and Industrial Microbiology with a particular interest in ''White Biotechnology'' and ''Red Biotechnology''. The emphasis is on processes employing microorganisms, eukaryotic cell cultures or enzymes for the biosynthesis, transformation and degradation of compounds. This includes fine and bulk chemicals, polymeric compounds and enzymes or other proteins. Downstream processes are also considered. Integrated processes combining biochemical and chemical processes are also published.
期刊最新文献
Compatibility and antimicrobial activity of silver nanoparticles synthesized using Lycopersicon esculentum peels. Scaling up production of cephalosporin C by Acremonium chrysogenum W42-I in a fermenter using submerged fermentation. Nano selenium in broiler feeding: physiological roles and nutritional effects. Crotalaria madurensis flavonol glycosides' antibacterial activity against Staphylococcus aureus. In vitro antibacterial activity of photoactivated flavonoid glycosides against Acinetobacter baumannii.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1