Characterization of chicken Relaxin3 gene: mRNA expression and response to reproductive hormone treatment in ovarian granulosa cells, and single nucleotide polymorphisms associated with egg laying traits in hens.
{"title":"Characterization of chicken <i>Relaxin3</i> gene: mRNA expression and response to reproductive hormone treatment in ovarian granulosa cells, and single nucleotide polymorphisms associated with egg laying traits in hens.","authors":"Chunfeng Zhang, Yi Sun, Li Kang, Yunliang Jiang","doi":"10.1080/10495398.2024.2370810","DOIUrl":null,"url":null,"abstract":"<p><p>As a protein structurally similar to insulin, relaxin3 (RLN3) plays a role in promoting arousal, suppressing depressive or anxious behaviors. Two studies revealed the increase of RLN3 expression during chicken follicle selection. In this study, by real-time quantitative PCR and luciferase assay, mRNA expression and single nucleotide polymorphisms (SNPs) of chicken <i>RLN3</i> were investigated. The mRNA expression of chicken <i>RLN3</i> was higher in the granulosa cell of hierarchal follicles (Post-GCs) than that of pre-hierarchal follicles (Pre-GCs). In Pre-GCs, the mRNA expression of chicken <i>RLN3</i> was stimulated by FSH and progesterone; in Post-GCs, it was stimulated by higher concentration of estrogen and FSH, however, was inhibited by progesterone. Four SNPs including g.-655G > C, g-592G > A, g.-372T > A and g.-282G > C were identified in the critical promoter region from -1291 bp to -207 bp of chicken <i>RLN3</i>, among which g.-655G > C, and g-592G > A were associated with age at first laying and clutch size, respectively, in Zaozhuang Sunzhi chickens. At g.-655G > C and g-592G > A, allele <i>C</i> and allele <i>A</i> had higher transcriptional activity, respectively. These data suggest that RLN3 plays an important role in chicken follicle development and SNPs in its promoter region are potential DNA markers for improving egg production traits.</p>","PeriodicalId":7836,"journal":{"name":"Animal Biotechnology","volume":" ","pages":"2370810"},"PeriodicalIF":1.7000,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Animal Biotechnology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1080/10495398.2024.2370810","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AGRICULTURE, DAIRY & ANIMAL SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
As a protein structurally similar to insulin, relaxin3 (RLN3) plays a role in promoting arousal, suppressing depressive or anxious behaviors. Two studies revealed the increase of RLN3 expression during chicken follicle selection. In this study, by real-time quantitative PCR and luciferase assay, mRNA expression and single nucleotide polymorphisms (SNPs) of chicken RLN3 were investigated. The mRNA expression of chicken RLN3 was higher in the granulosa cell of hierarchal follicles (Post-GCs) than that of pre-hierarchal follicles (Pre-GCs). In Pre-GCs, the mRNA expression of chicken RLN3 was stimulated by FSH and progesterone; in Post-GCs, it was stimulated by higher concentration of estrogen and FSH, however, was inhibited by progesterone. Four SNPs including g.-655G > C, g-592G > A, g.-372T > A and g.-282G > C were identified in the critical promoter region from -1291 bp to -207 bp of chicken RLN3, among which g.-655G > C, and g-592G > A were associated with age at first laying and clutch size, respectively, in Zaozhuang Sunzhi chickens. At g.-655G > C and g-592G > A, allele C and allele A had higher transcriptional activity, respectively. These data suggest that RLN3 plays an important role in chicken follicle development and SNPs in its promoter region are potential DNA markers for improving egg production traits.
期刊介绍:
Biotechnology can be defined as any technique that uses living organisms (or parts of organisms like cells, genes, proteins) to make or modify products, to improve plants, animals or microorganisms for a specific use. Animal Biotechnology publishes research on the identification and manipulation of genes and their products, stressing applications in domesticated animals. The journal publishes full-length articles and short research communications, as well as comprehensive reviews. The journal also provides a forum for regulatory or scientific issues related to cell and molecular biology applied to animal biotechnology.
Submissions on the following topics are particularly welcome:
- Applied microbiology, immunogenetics and antibiotic resistance
- Genome engineering and animal models
- Comparative genomics
- Gene editing and CRISPRs
- Reproductive biotechnologies
- Synthetic biology and design of new genomes