Martina Lazzarin, Killian Dupont, Wim van Ieperen, Leo F M Marcelis, Steven M Driever
{"title":"Far-red light effects on plant photosynthesis: from short-term enhancements to long-term effects of artificial solar light.","authors":"Martina Lazzarin, Killian Dupont, Wim van Ieperen, Leo F M Marcelis, Steven M Driever","doi":"10.1093/aob/mcae104","DOIUrl":null,"url":null,"abstract":"<p><strong>Background and aims: </strong>Long-term exposure over several days to far-red light (FR) increases leaf expansion, whereas short-term exposure (minutes) might enhance the photosystem II operating efficiency (ϕPSII). The interaction between these responses at different time scales and their impact on photosynthesis at the whole-plant level are not well understood. We aimed to assess the effects of FR in an irradiance mimicking the spectrum of sunlight (referred to as artificial solar irradiance), in both the long and short term, on whole-plant CO2 assimilation rates and in leaves at different positions in the plant.</p><p><strong>Methods: </strong>Tomato (Solanum lycopersicum) plants were grown under artificial solar irradiance conditions with either a severely reduced or normal fraction of FR [SUN(FR-) vs. SUN]. To elucidate the interplay between the growth light treatment and the short-term reduction of FR, we investigated this interaction at both the whole-plant and leaf levels. At the whole-plant level, CO2 assimilation rates were assessed under artificial solar irradiance with a normal fraction and a reduced fraction of FR. At the leaf level, the effects of removal and presence of FR (0FR and 60FR) during transition from high to low light on CO2 assimilation rates and chlorophyll fluorescence were evaluated in upper and lower leaves.</p><p><strong>Key results: </strong>SUN(FR-) plants had lower leaf area, shorter stems and darker leaves than SUN plants. Although reducing FR during growth did not affect whole-plant photosynthesis under high light intensity, it had a negative impact at low light intensity. Short-term FR removal reduced both plant and leaf CO2 assimilation rates, but only at low light intensity and irrespective of the light treatment during growth and the leaf position. Interestingly, the kinetics of ϕPSII from high to low light were accelerated by 60FR, with a larger effect in lower leaves of SUN than in SUN(FR-) plants.</p><p><strong>Conclusions: </strong>Growing plants with a reduced amount of FR light lowers whole-plant CO2 assimilation rates at low light intensity through reduced leaf area, despite maintaining similar leaf-level CO2 assimilation to leaves grown with a normal amount of FR. The short-term removal of FR brings about significant but marginal reductions in photosynthetic efficiency at the leaf level, regardless of the long-term growth light treatment.</p>","PeriodicalId":8023,"journal":{"name":"Annals of botany","volume":" ","pages":"589-602"},"PeriodicalIF":3.6000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11897601/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of botany","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/aob/mcae104","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Background and aims: Long-term exposure over several days to far-red light (FR) increases leaf expansion, whereas short-term exposure (minutes) might enhance the photosystem II operating efficiency (ϕPSII). The interaction between these responses at different time scales and their impact on photosynthesis at the whole-plant level are not well understood. We aimed to assess the effects of FR in an irradiance mimicking the spectrum of sunlight (referred to as artificial solar irradiance), in both the long and short term, on whole-plant CO2 assimilation rates and in leaves at different positions in the plant.
Methods: Tomato (Solanum lycopersicum) plants were grown under artificial solar irradiance conditions with either a severely reduced or normal fraction of FR [SUN(FR-) vs. SUN]. To elucidate the interplay between the growth light treatment and the short-term reduction of FR, we investigated this interaction at both the whole-plant and leaf levels. At the whole-plant level, CO2 assimilation rates were assessed under artificial solar irradiance with a normal fraction and a reduced fraction of FR. At the leaf level, the effects of removal and presence of FR (0FR and 60FR) during transition from high to low light on CO2 assimilation rates and chlorophyll fluorescence were evaluated in upper and lower leaves.
Key results: SUN(FR-) plants had lower leaf area, shorter stems and darker leaves than SUN plants. Although reducing FR during growth did not affect whole-plant photosynthesis under high light intensity, it had a negative impact at low light intensity. Short-term FR removal reduced both plant and leaf CO2 assimilation rates, but only at low light intensity and irrespective of the light treatment during growth and the leaf position. Interestingly, the kinetics of ϕPSII from high to low light were accelerated by 60FR, with a larger effect in lower leaves of SUN than in SUN(FR-) plants.
Conclusions: Growing plants with a reduced amount of FR light lowers whole-plant CO2 assimilation rates at low light intensity through reduced leaf area, despite maintaining similar leaf-level CO2 assimilation to leaves grown with a normal amount of FR. The short-term removal of FR brings about significant but marginal reductions in photosynthetic efficiency at the leaf level, regardless of the long-term growth light treatment.
期刊介绍:
Annals of Botany is an international plant science journal publishing novel and rigorous research in all areas of plant science. It is published monthly in both electronic and printed forms with at least two extra issues each year that focus on a particular theme in plant biology. The Journal is managed by the Annals of Botany Company, a not-for-profit educational charity established to promote plant science worldwide.
The Journal publishes original research papers, invited and submitted review articles, ''Research in Context'' expanding on original work, ''Botanical Briefings'' as short overviews of important topics, and ''Viewpoints'' giving opinions. All papers in each issue are summarized briefly in Content Snapshots , there are topical news items in the Plant Cuttings section and Book Reviews . A rigorous review process ensures that readers are exposed to genuine and novel advances across a wide spectrum of botanical knowledge. All papers aim to advance knowledge and make a difference to our understanding of plant science.