Evolution of the sporophyte shoot axis and functions of TALE HD transcription factors in stem development

IF 8.3 2区 生物学 Q1 PLANT SCIENCES Current opinion in plant biology Pub Date : 2024-06-28 DOI:10.1016/j.pbi.2024.102594
Katsutoshi Tsuda
{"title":"Evolution of the sporophyte shoot axis and functions of TALE HD transcription factors in stem development","authors":"Katsutoshi Tsuda","doi":"10.1016/j.pbi.2024.102594","DOIUrl":null,"url":null,"abstract":"<div><p>The stem is one of the major organs in seed plants and is important for plant survival as well as in agriculture. However, due to the lack of clear external landmarks in many species, its developmental and evolutionary processes are understudied compared to other organs. Recent approaches tackling these problems, especially those focused on KNOX1 and BLH transcription factors belonging to the TALE homeodomain superfamily have started unveiling the patterning process of nodes and internodes by connecting previously accumulated knowledge on lateral organ regulators. Fossil records played crucial roles in understanding the evolutionary process of the stem. The aim of this review is to introduce how the stem evolved from ancestorial sporophyte axes and to provide frameworks for future efforts in understanding the developmental process of this elusive but pivotal organ.</p></div>","PeriodicalId":11003,"journal":{"name":"Current opinion in plant biology","volume":"81 ","pages":"Article 102594"},"PeriodicalIF":8.3000,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current opinion in plant biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1369526624000852","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The stem is one of the major organs in seed plants and is important for plant survival as well as in agriculture. However, due to the lack of clear external landmarks in many species, its developmental and evolutionary processes are understudied compared to other organs. Recent approaches tackling these problems, especially those focused on KNOX1 and BLH transcription factors belonging to the TALE homeodomain superfamily have started unveiling the patterning process of nodes and internodes by connecting previously accumulated knowledge on lateral organ regulators. Fossil records played crucial roles in understanding the evolutionary process of the stem. The aim of this review is to introduce how the stem evolved from ancestorial sporophyte axes and to provide frameworks for future efforts in understanding the developmental process of this elusive but pivotal organ.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
孢子体芽轴的进化和 TALE HD 转录因子在茎发育中的功能。
茎是种子植物的主要器官之一,对植物的生存和农业都很重要。然而,由于许多物种缺乏明确的外部标志,与其他器官相比,茎的发育和进化过程研究不足。最近解决这些问题的方法,尤其是以 TALE 同源域超家族的 KNOX1 和 BLH 转录因子为重点的方法,通过连接以前积累的有关侧生器官调节因子的知识,开始揭示节和节间的模式化过程。化石记录在理解茎的进化过程中发挥了至关重要的作用。本综述旨在介绍茎是如何从祖先孢子叶轴演化而来的,并为今后理解这一难以捉摸但至关重要的器官的发育过程提供框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Current opinion in plant biology
Current opinion in plant biology 生物-植物科学
CiteScore
16.30
自引率
3.20%
发文量
131
审稿时长
6-12 weeks
期刊介绍: Current Opinion in Plant Biology builds on Elsevier's reputation for excellence in scientific publishing and long-standing commitment to communicating high quality reproducible research. It is part of the Current Opinion and Research (CO+RE) suite of journals. All CO+RE journals leverage the Current Opinion legacy - of editorial excellence, high-impact, and global reach - to ensure they are a widely read resource that is integral to scientists' workflow.
期刊最新文献
Grass awns: Morphological diversity arising from developmental constraint New perspectives of post-GWAS analyses: From markers to causal genes for more precise crop breeding Beat the heat: Breeding, genomics, and gene editing for high nighttime temperature tolerance in rice Gene regulatory networks in abiotic stress responses via single-cell sequencing and spatial technologies: Advances and opportunities Chitins and chitosans–A tale of discovery and disguise, of attachment and attainment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1