Lívia Cristina de Souza Viol, Natália Aparecida Liberto Silva, Cristiane Isaac Cerceau, Marcus Vinícius de Andrade Barros, Raoni Pais Siqueira, Victor Hugo Sousa Gonçalves, Gustavo Costa Bressan, Sergio Antonio Fernandes, Elson Santiago Alvarenga, Róbson Ricardo Teixeira
{"title":"NMR analysis, cytotoxic activity and theoretical study of a complex between SRPIN340 and <i>p</i>-sulfonic acid calix[6]arene.","authors":"Lívia Cristina de Souza Viol, Natália Aparecida Liberto Silva, Cristiane Isaac Cerceau, Marcus Vinícius de Andrade Barros, Raoni Pais Siqueira, Victor Hugo Sousa Gonçalves, Gustavo Costa Bressan, Sergio Antonio Fernandes, Elson Santiago Alvarenga, Róbson Ricardo Teixeira","doi":"10.1080/17568919.2024.2366690","DOIUrl":null,"url":null,"abstract":"<p><p><b>Aim:</b> This study aimed to enhance the aqueous dissolution of SRPK inhibitor <i>N</i>-(2-(piperidin-1-yl)-5-(trifluoromethyl)phenyl)isonicotinamide (SRPIN340).<b>Materials & Methods:</b> A complex with <i>p</i>-sulfonic calix[6]arene (Host) and SRPIN340 (Guest) was prepared, studied via <sup>1</sup>H nuclear magnetic resonance (NMR) and theoretical calculations and biologically evaluated on cancer cell lines.<b>Results & conclusion:</b> The 1:1 host (H)/guest (G) complex significantly enhanced the aqueous dissolution of SRPIN340, achieving 64.8% water solubility as determined by <sup>1</sup>H NMR quantification analysis. The H/G complex reduced cell viability by 75% for HL60, ∼50% for Nalm6 and Jurkat, and ∼30% for B16F10 cells. It exhibited greater cytotoxicity than free SRPIN340 against Jurkat and B16F10 cells. Theoretical studies indicated hydrogen bond stabilization of the complex, suggesting broader applicability of SRPIN340 across diverse biological systems.</p>","PeriodicalId":12475,"journal":{"name":"Future medicinal chemistry","volume":" ","pages":"1537-1550"},"PeriodicalIF":3.2000,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11370924/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Future medicinal chemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/17568919.2024.2366690","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/1 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
Aim: This study aimed to enhance the aqueous dissolution of SRPK inhibitor N-(2-(piperidin-1-yl)-5-(trifluoromethyl)phenyl)isonicotinamide (SRPIN340).Materials & Methods: A complex with p-sulfonic calix[6]arene (Host) and SRPIN340 (Guest) was prepared, studied via 1H nuclear magnetic resonance (NMR) and theoretical calculations and biologically evaluated on cancer cell lines.Results & conclusion: The 1:1 host (H)/guest (G) complex significantly enhanced the aqueous dissolution of SRPIN340, achieving 64.8% water solubility as determined by 1H NMR quantification analysis. The H/G complex reduced cell viability by 75% for HL60, ∼50% for Nalm6 and Jurkat, and ∼30% for B16F10 cells. It exhibited greater cytotoxicity than free SRPIN340 against Jurkat and B16F10 cells. Theoretical studies indicated hydrogen bond stabilization of the complex, suggesting broader applicability of SRPIN340 across diverse biological systems.
期刊介绍:
Future Medicinal Chemistry offers a forum for the rapid publication of original research and critical reviews of the latest milestones in the field. Strong emphasis is placed on ensuring that the journal stimulates awareness of issues that are anticipated to play an increasingly central role in influencing the future direction of pharmaceutical chemistry. Where relevant, contributions are also actively encouraged on areas as diverse as biotechnology, enzymology, green chemistry, genomics, immunology, materials science, neglected diseases and orphan drugs, pharmacogenomics, proteomics and toxicology.